JBiSE  Vol.9 No.7 , June 2016
A Multiplex PCR-Based Next-Generation Sequencing Approach Has Detected a Common Large Deletion in STS Gene in a Patient with X-Linked Ichthyosis
Abstract: Several nuclear genes have been found to be linked to ichthyosis, and Next Generation Sequencing approach on panels of targeted genes has turned out to be particularly useful in analyzing diseases characterized by significant genetic and phenotypic heterogeneity. We developed a panel of 26 genes to be screened with the Ion Personal Genome Machine (PGM) for causative mutations relating to ichthyosis. Sequencing runs were obtained from a patient with ichthyosis using the Ion Torrent PGM and then processed with Ion Torrent Suite, Variant Caller, Coverage Analysis and wANNOVER tools. No causative mutations were found using Variant Caller and wANNOVER softwares, whereas the “Coverage Analysis” tool revealed a common large deletion in STS gene in a patient with X-linked ichthyosis. Identification of indels in Next Generation Sequencing (NGS) data is a veritable challenge. This study demonstrates the efficacy and effectiveness of using NGS approach to detect large deletions without resorting to specific algorithms for “indel” detection. Our results indicate that the NGS panel is a useful, rapid and cost-effective screening test for patients whose features are suggestive of a genetic etiology involving one of the genes embedded in the panel. It is an excellent alternative to Sanger sequencing as for costs, ease of analysis, and turnaround time.
Cite this paper: Calì, F. , Mandarà, G. , Ruggeri, G. , Romano, C. , Chiavetta, V. , Ragalmuto, A. , Salluzzo, R. , Romano, V. , Tardanico, M. and Schepis, C. (2016) A Multiplex PCR-Based Next-Generation Sequencing Approach Has Detected a Common Large Deletion in STS Gene in a Patient with X-Linked Ichthyosis. Journal of Biomedical Science and Engineering, 9, 337-341. doi: 10.4236/jbise.2016.97028.

[1]   Williams, M.L. and Elias, P.M. (1986) Ichthyosis: Genetic Heterogeneity, Genodermatoses, and Genetic Counseling. Archives of Dermatology, 122, 529-531.

[2]   Traupe, H. (1989) The Ichthyoses: A Guide to Clinical Diagnosis, Genetic Counseling, and Therapy. Springer Verlag, New York.

[3]   Oji, V., Tadini, G., Akiyama, M., Blanchet Bardon, C., Bodemer, C., Bourrat, E., Coudiere, P., DiGiovanna, J.J., et al. (2010) Revised Nomenclature and Classification of Inherited Ichthyoses: Results of the First Ichthyosis Consensus Conference in Sorèze 2009. Journal of the American Academy of Dermatology, 63, 607-641.

[4]   Dreyfus, I., Chouquet, C., Ezzedine, K., Henner, S., Chiavé-rini, C., Maza, A., Pascal, S., Rodriguez, L., Vabres, P., Martin, L., Mallet, S., Barbarot, S., Dupuis, J. and Mazereeuw-Hautier, J. (2014) Prevalence of Inherited Ichthyosis in France: A Study Using Capture-Recapture Method. Orphanet Journal of Rare Diseases, 9, 1.

[5]   Milstone, L.M., Miller, K., Haberman, M. and Dickens, J. (2012) Incidence of Moderate to Severe Ichthyosis in the United States. Archives of Dermatology, 148, 1080-1081.

[6]   Wells, R.S. and Kerr, C.B. (1965) Genetic Classification of Ich-thyosis. Archives of Dermatology, 92, 1-6.

[7]   Basler, E., Grompe, M., Parenti, G., Yates, J. and Ballabio, A. (1992) Identification of Point Mutations in the Steroid Sulfatase Gene of Three Patients with X-Linked Ichthyosis. The American Journal of Human Genetics, 50, 483-491.

[8]   Shapiro, L.J., Yen, P., Pomerantz, D., Martin, E., Rolewic, L. and Mohandas, T. (1989) Molecular Studies of Deletions at the Human Steroid Sulfa-tase Locus. Proceedings of the National Academy of Sciences of the United States of America, 86, 8477-8481.

[9]   Ballabio, A., Parenti, G., Carrozzo, R., Sebastio, G., Andria, G., Buckle, V., Fraser, N., Craig, I., Rocchi, M., Romeo, G., Jobsis, A.C. and Persico, M.G. (1987) Isolation and Characterization of a Steroid Sulfatase cDNA Clone: Genomic Deletions in Patients with X-Chromosome-Linked Ichthyosis. Proceedings of the National Academy of Sciences of the United States of America, 84, 4519-4523.

[10]   Alperin, E.S. and Shapiro, L.J. (1997) Characterization of Point Mutations with X-Linked Ichthyosis: Effects on the Structure and Function of the Steroid Sulfatase Protein. The Journal of Biologi-cal Chemistry, 272, 20756-20763.

[11]   Metzker, M.L. (2010) Sequencing Technologies—The Next Generation. Nature Reviews Genetics, 11, 31-46.

[12]   Mardis, E.R. (2008) Next-Generation DNA Sequencing Methods. Annual Review of Genomics and Human Genetics, 9, 387-402.

[13]   Yang, H. and Wang, K. (2015) Genomic Variant Annotation and Prioritization with ANNOVAR and wANNOVAR. Nature Protocols, 10, 1556-1566.

[14]   Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G. and Mesirov, J.P. (2011) Integrative Genomics Viewer. Nature Biotechnology, 29, 24-26.

[15]   Thorvaldsdóttir, H., Robinson, J.T. and Mesirov, J.P. (2013) Integrative Genomics Viewer (IGV): High-Performance Genomics Data Visualization and Exploration. Briefings in Bioinformatics, 14, 178-192.

[16]   Ghoneim, D.H., Myers, J.R., Tuttle, E. and Paciorkowski, A.R. (2014) Comparison of Insertion/Deletion Calling Algorithms on Human Next-Generation Sequencing Data. BMC Research Notes, 7, 864.

[17]   Pareek, C.S., Smoczynski, R. and Tretyn, A. (2011) Sequencing Technologies and Genome Sequencing. Journal of Applied Genetics, 52, 413-435.