JBPC  Vol.2 No.3 , August 2011
Effect of disulfide bridges deletion on the conformation of the androctonin, polyphemusin-I, and thanatin antimicrobial peptides: molecular dynamics simulation studies
ABSTRACT
In this work, the role of the disulfide bridges in the maintenance of the secondary structure of the antimicrobial peptides androctonin, poly-phemusin-I, and thanatin is analyzed on the basis of their structural characteristics and of three of their respective mutants, andry4, poly4, and thany2, in which all the cysteine residues have been replaced with tyrosine residues. The absence of the disulfide bridges in andry4, poly4, and thany2 seems to be compensated by an overall enforcement of the original hydrogen bonds and by extra attractive interactions between the aromatic rings of the tyrosine residues. In spite of the mutations, the original β-hairpin structures are maintained in the three mutants, but the best conformational similarities are found for the androctonin/andry4 pair.

Cite this paper
nullCastro, J. , Fuzo, C. and Degrève, L. (2011) Effect of disulfide bridges deletion on the conformation of the androctonin, polyphemusin-I, and thanatin antimicrobial peptides: molecular dynamics simulation studies. Journal of Biophysical Chemistry, 2, 244-257. doi: 10.4236/jbpc.2011.23030.
References
[1]   Hawkey, P.M. (2008) The growing burden of antimicrobial resistance. Journal of Antimicrobial Chemotherapy, 62, i1-i9. doi:10.1093/jac/dkn241

[2]   Mulvey, M.R. and Simor, A.E. (2009) Antimicrobial resistance in hospitals: How concerned should we be? Canadian Medical Association Journal, 180, 408-415. doi:10.1503/cmaj.080239

[3]   Prates, M.V. and Bloch Júnior, C. (2000) Peptídeos antimicrobianos: Uma alternativa no combate a micro- organismos resistentes. Biotecnologia, Ciência & Desen- volvimento, 17, 30-36.

[4]   Fazio, M.A., Oliveira, V.X., Bulet, P., Miranda, M.T., Daffre, S. and Miranda, A. (2006) Structure-activity rela- tionship studies of gomesin: Importance of the disulfide bridges for conformation, bioactivities and serum stability. Biopolymers, 84, 205-218. doi:10.1002/bip.20396

[5]   Ramamoorthy, A., Thennarasu, S., Tan, A., Gottipati, K., Sreekumar, S., Heyl, D.L., An, F.Y. and Shelburne, C.E. (2006) Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Biochemistry, 45, 6529-6540. doi:10.1021/bi052629q

[6]   Che, Q., Zhou, Y., Yang, H., Li, J., Xu, X. and Lai, R. (2008) A novel antimicrobial peptide from amphibian skin secretions of Odorrana grahami. Peptides, 29, 529-535. doi:10.1016/j.peptides.2008.01.004

[7]   Daffre, S., Miranda, A., Miranda, M.T.M., Bulet, P., Silva Jr, P.I., Machado, A., Foga?a, A.C., Lorenzini, D.M., Periera, L.S., Fázio, M.A., Esteves, E. and Burgierman, M.R. (2001) Peptídeos antibióticos produzidos por aracnídeos. Bio- tecnologia Ciência & Desenvolvimento, 23, 48-55.

[8]   Chan, D.I., Prenner, E.J. and Vogel, H.J. (2006) Tryptophan and arginine-rich antimicrobial peptides: Structures and mechanisms of action. Biochimica et Biophysica Acta, 1758, 1184-1202. doi:10.1016/j.bbamem.2006.04.006

[9]   Zasloff, M. (2002) Antimicrobial peptides of multicellu- lar organisms. Nature, 415, 389-395. doi:10.1038/415389a

[10]   Ehret-Sabatier, L., Loew, D., Goyffon, M., Fehlbaum, P., Hoffmann, J.A., van Dorsselaer, A. and Bulet, P. (1996) Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. Journal of Biological Chemistry, 271, 29537-29544. doi:10.1074/jbc.271.47.29537

[11]   Mandard, N., Sy, D., Maufrais, C., Bonmatin, J.M., Bulet, P., Hetru, C. and Vovelle, F. (1999) Androctonin, a novel antimicrobial peptide from scorpion Androctonus australis: Solution structure and molecular dynamics simulations in the presence of a lipid monolayer. Journal of Biomolecular Structure and Dynamics, 17, 367-380.

[12]   Powers, J.P.S., Rozek, A. and Hancock, R.E.W. (2004) Structure-activity relationships for the b-hairpin cationic antimicrobial peptide polyphemusin I. Biochimica et Biophysica Acta, 1698, 239-250. doi:10.1016/j.bbapap.2003.12.009

[13]   Mandard, N., Sodano, P., Labbe, H., Bonmatin, J.M., Bulet, P., Hetru, C., Ptak, M. and Vovelle, F. (1998) Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data. European Journal of Biochemistry, 256, 404-410. doi:10.1046/j.1432-1327.1998.2560404.x

[14]   Fehlbaum, P., Bulet, P., Chernysh, S., Briand, J.P., Rous- sel, J.P., Letellier, L., Hetru, C. and Hoffmann, J.A. (1996) Structure-activity analysis of thanatin, a 21-residue enducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proceedings of the National Academy of Sciences, 93, 1221-1225.

[15]   Rao, A.G. (1999) Conformation and antimicrobial active- ity of linear derivatives of tachyplesin lacking disulfide bonds. Archives of Biochemistry and Biophysics, 361, 127-134. doi:10.1006/abbi.1998.0962

[16]   Guex, N. and Peitsch, M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714-2723. doi:10.1002/elps.1150181505

[17]   Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J.C. (2005) GROMACS: Fast, flexible and free. Journal of Computational Chemistry, 26, 1701-1718. doi:10.1002/jcc.20291

[18]   Van Gunsteren, W.F. (1996) Biomolecular simulation: The GROMOS96 manual and user guide. Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich, Zürich.

[19]   Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P. (1987) The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269-6271. doi:10.1021/j100308a038

[20]   Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.G.E.M. (1997) LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18, 1463-1472. doi:10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.3.CO;2-L

[21]   Miyamoto, S. and Kollman, P.A. (1992) Settle—An analytical version of the Shake and Rattle algorithm for rigid water models. Journal of Computational Chemistry, 13, 952-962. doi:10.1002/jcc.540130805

[22]   Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Dinola, A. and Haak, J.R. (1984) Molecular-dynamics with coupling to an external bath. Journal of Chemical Physics, 81, 3684-3690. doi:10.1063/1.448118

[23]   Darden, T., York, D. and Pedersen, L. (1993) Particle Mesh Ewald—An N-Log(N) method for Ewal sums in large systems. Journal of Chemical Physics, 98, 10089- 10092. doi:10.1063/1.464397

[24]   Van der Spoel, D., Lindahl, E., Hess, B., Van Buuren, A.R., Apol, E., Meulenhoff, P.J., Tieleman, D.P., Sijbers, A.L.T.M., Feenstra, K.A., Van Drunen, R. and Berendsen, H.J.C. (2005) Gromacs User manual version 3.3. http://www.gromacs.org/

[25]   Castro, J.R.M., Fuzo, C.A. and Degrève, L. (2008) The role of the disulfide bridges in the 3D structures of the antimicrobial peptides gomesin and protegrin-1: A molecular dynamics study. Genetics and Molecular Research, 7, 1070-1088. doi:10.4238/vol7-4gmr507

[26]   Santiveri, C.M., Leon, E., Rico, M. and Jimenez, M.A. (2008). Context-dependence of the contribution of disulfide bonds to beta-hairpin stability. Chemistry—A European Journal, 14, 488-499. doi:10.1002/chem.200700845

[27]   Mandard, N., Bulet, P., Caille, A., Daffre, S. and Vovelle, F. (2002) The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. European Journal of Biochemistry, 269, 1190-1198. doi:10.1046/j.0014-2956.2002.02760.x

[28]   Srinivasan, N., Sowdhamini, R., Ramakrishnan, C. and Balaram, P. (1990) Conformations of disulfide bridges in proteins. International Journal of Peptide and Protein Research, 36, 147-155. doi:10.1111/j.1399-3011.1990.tb00958.x

[29]   Mazzé, F.M., Fuzo, C.A. and Degrève, L. (2005) A new amphipaty scale. Determination of the scale from molecular dynamics data. Biochimica et Biophysica Acta, 1747, 35-46. doi:10.1016/j.bbapap.2004.09.019

[30]   Eisenberg, D. and Maclachlan, A.D. (1986) Solvation energy in protein folding and binding. Nature, 319, 199-203. doi:10.1038/319199a0

 
 
Top