Back
 JAMP  Vol.4 No.6 , June 2016
Spatio-Temporal Pulsating Dissipative Solitons through Collective Variable Methods
Abstract: A semi-analytical approach for the pulsating solutions of the 3D complex Cubic-quintic Ginzburg-Landau Equation (CGLE) is presented in this article. A collective variable approach is used to obtain a system of variational equations which give the evolution of the light pulses parameters as a function of the propagation distance. The collective coordinate approach is incomparably faster than the direct numerical simulation of the propagation equation. This allows us to obtain, efficiently, a global mapping of the 3D pulsating soliton. In addition it allows describing the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics.
Cite this paper: Asseu, O. , Diby, A. , Yoboué, P. and Kamagaté, A. (2016) Spatio-Temporal Pulsating Dissipative Solitons through Collective Variable Methods. Journal of Applied Mathematics and Physics, 4, 1032-1041. doi: 10.4236/jamp.2016.46108.
References

[1]   Saarlos, W.V. and Hhenberg, P.C. (1992) Fronts, Pulse, Sources and Sinks in Generalized Ginzburg-Landau. Physica D, 56, 303-367.
http://dx.doi.org/10.1016/0167-2789(92)90175-M

[2]   Soto-Crespo, J.M., Akhmediev, N. and Town, G. (2002) Continuous-Wave versus Pulse Regime in Passively Mode Locked Laser with a Fast Saturable Absorber. Journal of the Optical Society of America B, 19, 234-242.
http://dx.doi.org/10.1364/JOSAB.19.000234

[3]   Akhmediev, N. and Ankiewicz, A. (2005) Dissipative Solitons. Springer, Heidelberg.
http://dx.doi.org/10.1007/b11728

[4]   Rosanov, N.N. (2002) Spatial Hysteresis and Optical Patterns. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-04792-7

[5]   Sakaguchi, H. and Malomed, B.A. (2001) Instabilities and Splitting of Pulses in Coupled Ginzburg-Landau Equations. Physica D, 154, 229-239.
http://dx.doi.org/10.1016/S0167-2789(01)00243-3

[6]   Akhmediev, N., Soto-Crespo, J.M. and Town, G. (2001) Pulsating Solitons, Chaotic Solitons, Period Doubling, and Pulse Coexistence in Mode-Locked Lasers: CGLE Approach. Physical Review E, 63, Article ID: 056602.
http://dx.doi.org/10.1103/PhysRevE.63.056602

[7]   Deissler, R.J. and Brand, H.R. (1994) Periodic, Quasiperiodic, and Chaotic Localized Solutions of the Quintic Complex Ginzburg-Landau Equation. Physical Review Letters, 72, 478-481.
http://dx.doi.org/10.1103/PhysRevLett.72.478

[8]   Soto-Crespo, J.M., Grelu, M.Ph. and Akhmediev, N. (2004) Bifurcations and Multiple-Period Soliton Pulsations in a Passively Mode-Locked Fiber Laser. Physical Review E, 70, Article ID: 066612.
http://dx.doi.org/10.1103/physreve.70.066612

[9]   Akhmediev, N. and Ankiewicz, A. (2003) Solitons around Us: Integrable, Hamiltonian and Dissipative Systems. In: Porsezian, K. and Kurakose, V.C., Eds., Optical Solitons: Theoretical and Experimental Challenges, Springer, Heidelberg.

[10]   Kamagaté, A., Grelu, Ph., Tchofo-Dinda, P., Soto-Crespo, J.M. and Akhmediev, N. (2009) Stationary and Pulsating Dissipative Light Bullets from a Collective Variable Approach. Physical Review E, 79, Article ID: 026609.
http://dx.doi.org/10.1103/physreve.79.026609

[11]   Haus, H.A., Fujimoto, J.G. and Ippen, E.P. (1995) Structures for Additive Pulse Mode Locking. Journal of the Optical Society of America B, 8, 2068-2076.
http://dx.doi.org/10.1364/JOSAB.8.002068

[12]   Soto-Crespo, J.M., Akhmediev, N.N., Afanasjev, V.V. and Wabnitz, S. (1997) Pulse Solutions of the Cubic-Quintic Complex Ginzburg-Landau Equation in the Case of Normal Dispersion. Physical Review E, 55, 4783-4796.
http://dx.doi.org/10.1103/PhysRevE.55.4783

[13]   Moores, J.D. (1993) On the Ginzburg-Landau Laser Mode-Locking Model with Fifth-Odersaturable Absorber Term. Optics Communications, 96, 65-70.
http://dx.doi.org/10.1016/0030-4018(93)90524-9

[14]   Soto-Crespo, J.M., Akhmediev, N. and Grelu, P. (2006) Optical Bullets and Double Bullet Complexes in Dissipative Systems. Physical Review E, 74, Article ID: 046612.
http://dx.doi.org/10.1103/physreve.74.046612

[15]   Boesch, R., Stancioff, P. and Willis, C.R. (1988) Hamiltonian Equations for Multiple-Collective-Variable Theories of Nonlinear Klein-Gordon Equations: A Projection-Operator Approach. Physical Review B, 38, 6713-6735.
http://dx.doi.org/10.1103/PhysRevB.38.6713

[16]   Tchofo-Dinda, P., Moubissi, A.B. and Nakkeeran, K. (2001) Collective Variable Theory for Optical Solitons in Fibers. Physical Review E, 64, Article ID: 016608.
http://dx.doi.org/10.1103/physreve.64.016608

[17]   Soto-Crespo, J.M., Akhmediev, N. and Ankiewicz, A. (2000) Pulsating, Creeping, and Erupting Solitons in Dissipative Systems. Physical Review Letters, 85, 2937.
http://dx.doi.org/10.1103/PhysRevLett.85.2937

[18]   Kamagaté, A. (2010) Propagation des solitons spatio-temporels dans des milieux dissipatifs. Ph.D. Dissertation, Universite de Bourgogne, Bourgogne.

 
 
Top