Back
 AJCM  Vol.6 No.2 , June 2016
The Rectangle Rule for Computing Cauchy Principal Value Integral on Circle
Abstract: The classical composite rectangle (constant) rule for the computation of Cauchy principle value integral with the singular kernel  is discussed. We show that the superconvergence rate of the composite midpoint rule occurs at certain local coodinate of each subinterval and obtain the corresponding superconvergence error estimate. Then collation methods are presented to solve certain kind of Hilbert singular integral equation. At last, some numerical examples are provided to validate the theoretical analysis.
Cite this paper: Li, J. , Gong, B. and Liu, W. (2016) The Rectangle Rule for Computing Cauchy Principal Value Integral on Circle. American Journal of Computational Mathematics, 6, 98-107. doi: 10.4236/ajcm.2016.62011.
References

[1]   Diethdm, K. (1995) Asymptotically Sharp Error Bounds for a Quadrature Rule for Cauchy Principal Value Integrals Based on Piecewise Linear Interpolation, Approx. Theory of Probability and Its Applications, 11, 78-89.

[2]   Elliott, D. and Venturino, E. (1997) Sigmoidal Transformations and the Euler-Maclaurin Expansion for Evaluating Certain Hadamard Finite-Part Integrals. Numerische Mathematik, 77, 453-465.
http://dx.doi.org/10.1007/s002110050295

[3]   Hasegawa, T. (2004) Uniform Approximations to Finite Hilbert Transform and Its Derivative. Journal of Computational and Applied Mathematics, 163, 127-138.
http://dx.doi.org/10.1016/j.cam.2003.08.059

[4]   Ioakimidis, N.I. (1985) On the Uniform Convergence of Gaussian Quadrature Rules for Cauchy Principal Value Integrals and Their Derivatives. Mathematics of Computation, 44, 191-198.
http://dx.doi.org/10.1090/S0025-5718-1985-0771040-8

[5]   Yu, D.H. (2002) Natural Boundary Integrals Method and Its Applications. Kluwer Academic Publishers, Dordrecht, 50.

[6]   Yu, D.H. (1992) The Approximate Computation of Hypersingular Integrals on Interval. Numerical Mathematics: A Journal of Chinese Universities (English Series), 1, 114-127.

[7]   Zhang, X.P., Wu, J.M. and Yu, D.H. (2010) The Superconvergence of Composite Trapezoidal Rule for Hadamard Finite-Part Integral on a Circle and Its Application. International Journal of Computer Mathematics, 87, 855-876.
http://dx.doi.org/10.1080/00207160802226517

[8]   Wu, J.M. and Sun, W.W. (2008) The Superconvergence of Newton-Cotes Rules for the Hadamard Finite-Part Integral on an Interval. Numerische Mathematik, 109, 143-165.
http://dx.doi.org/10.1007/s00211-007-0125-7

[9]   Lyness, J.N. and Ninhan, B.W. (1967) Numerical Quadrature and Asymptotic Expansions. Mathematics of Computation, 21, 162-178.
http://dx.doi.org/10.1090/S0025-5718-1967-0225488-X

[10]   Sidi, A. and Israeli, M. (1988) Quadrature Methods for Periodic Singular and Weakly Singular Fredholm Integral Equations. Journal of Scientific Computing, 3, 201-231.
http://dx.doi.org/10.1007/BF01061258

[11]   Sidi, A. (2003) Practical Extrapolation Methods: Theory and Applications. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511546815

[12]   Zeng, G., Lei, L. and Huang, J. (2015) A New Construction of Quadrature Formulas for Cauchy Singular Integral. Journal of Computational Analysis and Applications, 17, 426-436.

[13]   Sidi, A. (2014) Analysis of Errors in Some Recent Numerical Quadrature Formulas for Periodic Singular and Hypersingular Integrals via Regularization. Applied Numerical Mathematics, 81, 30-39.
http://dx.doi.org/10.1016/j.apnum.2014.02.011

[14]   Li, J., Wu, J.M. and Yu, D.H. (2009) Generalized Extrapolation for Computation of Hypersingular Integrals in Boundary Element Methods. CMES: Computer Modeling in Engineering & Sciences, 42, 151-175.

[15]   Li, J., Zhang, X.P. and Yu, D.H. (2013) Extrapolation Methods to Compute Hypersingular Integral in Boundary Element Methods. Science China Mathematics, 56, 1647-1660.
http://dx.doi.org/10.1007/s11425-013-4593-1

[16]   Linz, P. (1985) On the Approximate Computation of Certain Strongly Singular Integrals. Computing, 35, 345-353.
http://dx.doi.org/10.1007/BF02240199

[17]   Andrews, L.C. (1992) Special Functions of Mathematics for Engineers. 2nd Edition, McGraw-Hill, Inc., Cambridge, 258.

 
 
Top