[1] Hahn, M. W., Han, M. V., and Han, S. G., (2007) Gene family evolution across 12 Drosophila genome, Public Library of Science Genetics, 3, 1–12.
[2] Matthee, C. A., Eick, G., Willows, M. S., Montgelard, C., Pardini, A. T., and Robinson, T. J., (2007) Indel evolution of mammalian introns and the utility of non coding nuclear mark-ers in eutherian phylogenetics, Molecular Phylogenetics and Evolution, 42, 827–837.
[3] Cardazzo, B., Bargelloni, L., Toffolatti, L., and Patarnello, T., (2003) Intervening sequences in paralogous genes: A compara-tive genomic approach to study the evolution of X chromo-some introns, Molecular Biology and Evolution, 20, 2034–2041.
[4] Gazave, E., Bonet, T. M., Fernando, O., Charlesworth, B., and Navarro, A., (2007) Patterns and rates of intron divergence between humans and chimpanzees, Genome Biology, 8, 1–13.
[5] Huynen, M. A. and Bork, P., (1998) Measuring genome evolu-tion, Proceedings of National Academy of Sciences USA, 95, 5849–5856.
[6] Clark, A. G., Eisen, B. M., Smith, D. R., Bergman, C. M., Oliver, B., Markow, T. A., et al., (2007) Evolution of genes and genomes on the Drosophila phylogeny, Nature, 450, 203–218.
[7] WHO. (2005) World malaria report. http://www.rbm.who.int/wmr.
[8] Zakeri, S., Afsharpad, M., Raeisi, A., and Djadid, N. D., (2007) Prevalence of mutations associated with antimalarial drugs in Plasmodium falciparum isolates prior to the introduction of sulphadoxine-pyrimethamine as first- line treatment in Iran, Malaria Journal, 6, 1–2.
[9] Holt, R. A., Subramanian, G. M., Helpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., et al., (2002) The genome se-quence of the malaria mosquito Anopheles gambiae, Science, 298, 129–149.
[10] Stephen, S. F., (2004) The X chromosome in population ge-netics, Nature Reviews Genetics, 5, 43–51.
[11] Vogl, C., Das, A., Beaumont, M., Mohanty, S., and Stephan, W., (2003) Population subdivision and molecular sequence variation: Theory and and analysis of Drosophila ananassae data, Genetics, 165, 1385–1395.
[12] Bains, J. F., Das, A., Mousset, S., and Stephan, W., (2004) The role of natural selection in genetic differentiation of worldwide populations of Drosophila ananassae, Genetics, 168, 1987–1998.
[13] Das, A., Mohanty, S., and Stephan, W., (2004) Inferring the population structure and demography of Drosophila ananassae from multilocus data, Genetics, 168, 1975– 1985.
[14] Castillo-Davis, C. I., Mekhedov, S. L., Hartl, D. L., Koonin, E. V., and Kondrashov, F. A., (2002) Selection for short introns in highly expressed genes, Nature Genetics, 31, 414–418.
[15] Vinogrado, A. E. (2004) Compactness of human housekeeping genes: Selection for economy or genomic design, Trends in Genetics, 20, 248–253.
[16] Jain, M., Tyagi, A. K., and Khurana, J. P., (2006) Genome wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa), Genomics, 88, 360–371.
[17] Jain, M., Khurana, P., Tyagi, A. K., and Khurana, J., (2007) Genome-wide analysis of intronless genes in rice and Arabi-dopsis, Functional & Integrative Genomics, In Press.
[18] Simpson, A. G. B., Macquarrie, E. K., Roger, A. J., (2002) Eukaryotic evolution: Early origin of canonical introns, Nature, 419, 270.
[19] Jones, A. K., Grauso, M., and Sattelle, B. D., (2004) The nico-tinic acetylcholine receptor gene family of the malaria mos-quito, Anopheles gambiae, Genomics, 85, 176– 187.
[20] Matsuda, K., Buchigham, S. D., Kleier, D., Rauh, J. J., Grauso, M., and Sattelle, D. B., (2001) Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors, Trends in Pharmacological Sciences, 22, 573–580.
[21] Bond, G. J., Marina, C. F., and Williams, T., (2004) The natu-rally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae, Medical and Veterinary Entomol-ogy, 18, 50–56.
[22] Manuel, I., David, P., and Scott, W. R., (2007) Coevolution of genomic intron number and splice sites, Trends in Genetics, 23, 321–325.
[23] Jordan, I. K., Marino-Ramirez, L., Wolf, Y. I., and Koonin, E. V., (2004) Conservation and co-evolution in the scale-free human gene co-expression network, Mole- culer Biologyand Evolution, 21, 2058–2070.
[24] Carmel L., Rogozin I. B., Wolf, Y. I., and Koonin, E. V., (2007) Evolutionarily conserved genes preferentially accumulate in-trons, Genome Research, 17, 1045–1050.
[25] Castillo-Davis, C. I., Bedford, T. B. C., and Hartl, D. L., (2004) Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasite, Mo-lecular Biology and Evolution, 21, 1422– 1427.
[26] Stirling, B., Yang, Z. K., Gunter, L. E., Tuskan, G. A., and Bradshaw, H. D., (2003) Comparative sequence analysis be-tween orthologous regions of the Arabidopsis and Populus genomes reveals substantial synteny and microcollinearity, Canadian Journal of Forest Research, 33, 2245–2255.
[27] Bohbot, J., Pitts, R. J., Kwon, H. W., Rutzler, M., Robertson, H. M., and Zwiebel, L. J. (2007) Molecular characterization of Aedes aegypti odorant receptor gene family, Insect Molecular Biology, 16, 525–537.
[28] Uddin, M., Wildman, D. E., Liu, G., Xu, W., Johnson, R. M., Hof, P. R., et al., (2004) Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression analysis, Proceedings of National Acad-emy of Sciences, 101, 2957– 2962.
[29] Gilad, Y., Man, O., and Glusman, G., (2005) A comparison of the human and chimpanzee olfactory receptor gene repertoires, Genome Research, 15, 224–230.
[30] Martin, M. J., Rayner, J. C., Gagneux, P, Barnwell, J. W., and Varki, A., (2005) Evolution of human-chimpanzee differences in malaria susceptibility: Relationship to human genetic loss of N-glycolylneuraminic acid, Proceedings of National Academy of Sciences, 102, 12819– 12824.