Back
 AJIBM  Vol.6 No.5 , May 2016
Design and Comparison of Genetic Algorithms for Mixed-Model Assembly Line Balancing Problem with Original Task Times of Models
Abstract: Assembly line balancing is a key for organizational productivity in terms of reduced number of workstations for a given production volume per shift. Mixed-model assembly line balancing is a reality in many organizations. The mixed-model assembly line balancing problem comes under combinatorial category. So, in this paper, an attempt has been made to develop three genetic algorithms for the mixed-model assembly line balancing problem such that the combined balancing efficiency is maximized, where the combined balancing efficiency is the average of the balancing efficiencies of the individual models. At the end, these three algorithms and another algorithm in literature are compared in terms of balancing efficiency using a randomly generated set of problems through a complete factorial experiment, in which “Algorithm”, “Problem Size” and “Cycle Time” are used as factors with two replications under each of the experimental combinations to draw inferences and to identify the best of the four algorithms. Then, through another set of randomly generated small and medium size data, the results of the best algorithm are compared with the optimal results obtained using a mathematical model. It is found that best algorithm gives the optimal solution for all the problems in the second set of data, except for one problem which cannot be solved using the model. This observation supports the fact that the best algorithm identified in this paper gives superior results.
Cite this paper: Sivasankaran, P. and Shahabudeen, P. (2016) Design and Comparison of Genetic Algorithms for Mixed-Model Assembly Line Balancing Problem with Original Task Times of Models. American Journal of Industrial and Business Management, 6, 674-696. doi: 10.4236/ajibm.2016.65063.
References

[1]   Sivasankaran, P. and Shahabudeen, P. (2013) Genetic Algorithm for Concurrent Balancing of Mixed-Model Assembly Lines with Original Task Times of Models. Intelligent Information Management, 5, 84-92.
http://dx.doi.org/10.4236/iim.2013.53009

[2]   Sivasankaran, P. and Shahabudeen, P. (2014) Literature Review of Assembly Line Balancing Problems. International Journal of Advanced Manufacturing Technology, 73, 1665-1694.
http://dx.doi.org/10.1007/s00170-014-5944-y

[3]   Gokcen, H. and Erel, E. (1997) A Goal Programming Approach to Mixed-Model Assembly Line Balancing Problem. International Journal of Production Economics, 48, 177-185.

[4]   Gokcen, H. and Erel, E. (1998) Binary Integer Formulation for Mixed-Model Assembly Line Balancing Problem. Computers & Industrial Engineering, 34, 451-461.
http://dx.doi.org/10.1016/S0360-8352(97)00142-3

[5]   Choi, G. (2009) A Goal Programming Mixed-Model Line Balancing for Processing Time and Physical Workload. Computers & Industrial Engineering, 57, 395-400.
http://dx.doi.org/10.1016/j.cie.2009.01.001

[6]   Emde, S., Boysen, N. and Scholl, A. (2010) Balancing Mixed-Model Assembly Lines: A Computational Evaluation of Objectives to Smoothen Workload. International Journal of Production Research, 48, 3173-3191.
http://dx.doi.org/10.1080/00207540902810577

[7]   Kara, Y., Ozgiiven, C., Seeme, N.Y. and Chang, C.T. (2011) Multi-Objective Approaches to Balance Mixed-Model Assembly Lines for Model Mixes Having Precedence Conflicts and Duplicate Common Tasks. International Journal of Advanced Manufacturing Technology, 52, 725-737.
http://dx.doi.org/10.1007/s00170-010-2779-z

[8]   Sivasankaran, P. and Shahabudeen, P. (2013) Modelling Hybrid Single Model Assembly Line Balancing Problem. UDYOG PRAGATI, 37, 26-36.

[9]   Öztürk, C., Tunal, S., Hnich, B. and Örnek, A. (2013) Balancing and Scheduling of Flexible Mixed-Model Assembly Lines with Parallel Stations. International Journal of Advanced Manufacturing Technology, 67, 2577-2591.
http://dx.doi.org/10.1007/s00170-012-4675-1

[10]   Seker, S., Ozgürler, M. and Tanyas, M. (2013) A Weighted Multi-Objective Optimization Method for Mixed-Model Assembly Line Problem. Journal of Applied Mathematics, 2013, Article ID: 531056.

[11]   Akpinar, S. and Baykasoglu, A. (2014) Modeling and Solving Mixed-Model Assembly Line Balancing Problem with Setups, Part I: A Mixed Integer Linear Programming Model. Journal of Manufacturing Systems, 33, 177-187.
http://dx.doi.org/10.1016/j.jmsy.2013.11.004

[12]   Akpinar, S. and Baykasoglu, A. (2014) Modeling and Solving Mixed-Model Assembly Line Balancing Problem with Setups. Part II: A Multiple Colony Hybrid Bees Algorithm. Journal of Manufacturing Systems, 33, 445-461.

[13]   Bukchin, Y. and Rabinowitch, I. (2006) A Branch-and-Bound Based Solution Approach for the Mixed-Model Assembly Line-Balancing Problem for Minimizing Stations and Task Duplication Costs. European Journal of Operational Research, 174, 492-508.
http://dx.doi.org/10.1016/j.ejor.2005.01.055

[14]   Yang, C.J., Gao, J. and Li, J.L. (2014) Balancing Mixed-Model Assembly Lines with Adjacent Task Duplication. International Journal of Production Research, 52, 7454-7471.
http://dx.doi.org/10.1080/00207543.2014.937012

[15]   Kim, Y.K. and Kim, J.Y. (2000) A Co-Evolutionary Algorithm for Balancing and Sequencing in Mixed-Model Assembly Lines. Applied Intelligence, 13, 247-258.
http://dx.doi.org/10.1023/A:1026568011013

[16]   Matanachai, S. and Yano, C.A. (2001) Balancing Mixed-Model Assembly Lines to Reduce Work Overload. IIE Transactions, 33, 29-42.
http://dx.doi.org/10.1080/07408170108936804

[17]   Jin, M. and Wu, S.D. (2002) A New Heuristic Method for Mixed-Model Assembly Line Balancing Problem. Computers & Industrial Engineering, 44, 159-169.
http://dx.doi.org/10.1016/S0360-8352(02)00190-0

[18]   Hop, N.V. (2006) A Heuristics Solution for Fuzzy Mixed-Modellling Balancing Problem. European Journal of Operational Research, 168, 798-810.
http://dx.doi.org/10.1016/j.ejor.2004.07.029

[19]   Rahimi-Vahed, A. and Mirzaei, A.H. (2007) A Hybrid Multi-Objective Shuffled Frog-Leaping Algorithm for a Mixed-Model Assembly Line Sequencing Problem. Computers & Industrial Engineering, 53, 642-666.
http://dx.doi.org/10.1016/j.cie.2007.06.007

[20]   Kilincci, O. (2011) Firing Sequences backward Algorithm for Simple Assembly Line Balancing Problem of Type 1. Computers and Industrial Engineering, 60, 830-839.
http://dx.doi.org/10.1016/j.cie.2011.02.001

[21]   Al-Mamun, A. and Chowdhury, M.M. (2011) A Heuristic Approach for Balancing Mixed-Model Assembly Line of Type-I Using Genetic Algorithm. International Conference on Mechanical, Production and Automobile Engineering (ICMPAE’2011), Pattaya, 17-18 December 2011, 259-262.

[22]   Al-Mamun, A., Khaled, A.A., Ali, S.M. and Chowdhury, M.M. (2012) A Heuristic Approach for Balancing Mixed-Model Assembly Line of Type I Using Genetic Algorithm. International Journal of Production Research, 50, 5106-5116.
http://dx.doi.org/10.1080/00207543.2011.643830

[23]   Zhang, X.M. and Han, X.C. (2012) The Balance Problem Solving of the Car Mixed-Model Assembly Line Based on Hybrid Differential Evolution Algorithm. Applied Mechanics and Materials, 220-223, 178-183.
http://dx.doi.org/10.4028/www.scientific.net/AMM.220-223.178

[24]   Fathi, M., Jahan, A., Ariffin, M.K. and Ismail, N. (2011) A New Heuristic Method Based on CPM in SALBP. Journal of Industrial Engineering International, 7, 1-11.

[25]   Fattahi, P., Roshani, A. and Roshani, A. (2011) A Mathematical Model and Ant Colony Algorithm for Multi-Manned Assembly Line Balancing Problem. International Journal of Advanced Manufacturing Technology, 53, 363-378.
http://dx.doi.org/10.1007/s00170-010-2832-y

[26]   Rahimi-Vahed, A.R., Rabbani, M., Tavakkoli-Moghaddam, R., Torabi, S.A. and Jolai, F. (2007) A Multi-Objective Scatter Search for a Mixed-Model Assembly Line Sequencing Problem. Advanced Engineering Informatics, 21, 85-99.

[27]   Chutima, P. and Iammi, J. (2003) Application of Genetic Algorithms in Mixed-Model Assembly Line Balancing. KMUTT Research & Development Journal, 26, 1-16.

[28]   Haq, A.N., Jayaprakash, J., and Rengarajan, K. (2006) A Hybrid Genetic Algorithm Approach to Mixed-Model Assembly Line Balancing. International Journal of Advanced Manufacturing Technology, 28, 337-341.
http://dx.doi.org/10.1007/s00170-004-2373-3

[29]   Su, P. and Lu, Y. (2007) Combining Genetic Algorithm and Simulation for the Mixed-Model Assembly Line Balancing Problem. 3rd International Conference on Natural Computation (ICNC 2007), 4, 314-318.

[30]   Bai, Y., Zhao, H. and Zhu, L. (2009) Mixed-Model Assembly Line Balancing Using the Hybrid Genetic Algorithm. International Conference on Measuring Technology and Mechatronics Automation, 3, 242-245.
http://dx.doi.org/10.1109/icmtma.2009.591

[31]   Al-e-Hashem, S.M.J.M. and Aryanezhad, M.B. (2009) An Efficient Method to Solve a Mixed-Model Assembly Line Sequencing Problem Considering a Sub-Line. World Applied Sciences Journal, 6, 168-181.

[32]   Moon, I., Logendran, R. and Lee, J. (2009) Integrated Assembly Line Balancing with Resource Restrictions. International Journal of Production Research, 47, 5525-5541.
http://dx.doi.org/10.1080/00207540802089876

[33]   Akpinar, S. and Bayhan, G.M. (2011) A Hybrid Genetic Algorithm for Mixed-Model Assembly Line Balancing Problem with Parallel Workstations and Zoning Constraints. Engineering Applications of Artificial Intelligence, 24, 449-457.
http://dx.doi.org/10.1016/j.engappai.2010.08.006

[34]   Mamun, A.A., Khaled, A.A., Ali, S.M. and Chowdhury, M.M. (2012) A Heuristic Approach for Balancing Mixed-Model Assembly Line of Type I Using Genetic Algorithm. International Journal of Production Research, 50, 5106-5116.
http://dx.doi.org/10.1080/00207543.2011.643830

[35]   Senthilkumar, P. and Shahabudeen, P. (2006) GA Based Heuristic for the Open Shop Scheduling Problem. International Journal of Advanced Manufacturing Technology, 30, 297-301.
http://dx.doi.org/10.1007/s00170-005-0057-2

[36]   Sivasankaran, P. and Shahabudeen, P. (2014) Study and Analysis of GA-Based Heuristic Applied to Assembly Line Balancing Problem. Journal of Advanced Manufacturing Systems, 13, 113-131.
http://dx.doi.org/10.1142/S0219686714500085

[37]   Fattahi, P. and Salehi, M. (2009) Sequencing the Mixed-Model Assembly Line to Minimize the Total Utility and Idle Costs with Variable Launching Interval. International Journal of Advanced Manufacturing Technology, 45, 987-998.
http://dx.doi.org/10.1007/s00170-009-2020-0

[38]   Ozcan, U., Cercioglu, H., Gokcen, H. and Toklu, B. (2010) Balancing and Sequencing of Parallel Mixed-Model Assembly Lines. International Journal of Production Research, 48, 5089-5113.
http://dx.doi.org/10.1080/00207540903055735

[39]   Yagmahan, B. (2011) Mixed-Model Assembly Line Balancing Using a Multi-Objective Ant Colony Optimization Approach. Expert Systems with Applications, 38, 12453-12461.
http://dx.doi.org/10.1016/j.eswa.2011.04.026

[40]   Panneerselvam, R. (2012) Production and Operations Management. 3rd Edition, PHI Learning, New Delhi.

[41]   Panneerselvam, R. (2016) Design and Analysis of Algorithms. 2nd Edition, PHI Learning, New Delhi.

[42]   Panneerselvam, R. (2012) Design and Analysis of Experiments. PHI Learning, New Delhi.

[43]   Panneerselvam, R. (2012) Research Methodology. PHI Learning, New Delhi.

[44]   Panneerselvam, R. (2006) Operations Research. PHI Learning, New Delhi.

 
 
Top