Back
 Health  Vol.8 No.7 , May 2016
Magnesium Therapy Prevents Senescence with the Reversal of Diabetes and Alzheimer’s Disease
Abstract: In the current global epidemic for Non Alcoholic Fatty Liver Disease (NAFLD), diabetes and neuro-degenerative diseases such as Alzheimer’s disease there has been a major interest in magnesium therapy to delay the severity of NAFLD, Type 3 diabetes and neurodegeneration in the developing and developed world. The objective of magnesium therapy is to activate the anti-aging gene Sirtuin 1 (Sirt1) to prevent cardiovascular disease, NAFLD and diabetes. Reduced consumption of nutrients such as fatty acids, glucose, cholesterol and increased magnesium consumption is closely linked to reduced bacterial lipopolysaccharides (LPS) and activation of Sirt1 relevant to active nuclear and mitochondria interactions with the prevention of myocardial infarction and Type 3 diabetes. Magnesium deficiency and its effects on Sirt1 regulation have become important with magnesium deficiency associated with appetite dysregulation, senescence, glucose/nitric oxide dyshomeostasis, increased ceramide and toxic amyloid beta formation. Magnesium therapy activates the peripheral sink amyloid beta clearance pathway with the reversal of cell senescence associated with various chronic diseases such as cardiovascular disease, Type 3 diabetes and Alzheimer’s disease.
Cite this paper: Martins, I. , (2016) Magnesium Therapy Prevents Senescence with the Reversal of Diabetes and Alzheimer’s Disease. Health, 8, 694-710. doi: 10.4236/health.2016.87073.
References

[1]   James, P.T., Rigby, N. and Leach, R. (2004) The Obesity Epidemic, Metabolic Syndrome and Future Prevention Strategies. European Journal of Preventive Cardiology, 11, 3-8.
http://dx.doi.org/10.1097/01.hjr.0000114707.27531.48

[2]   Flegal, K.M., Kit, B.K., Orpana, H. and Graubard, B.I. (2013) Association of All Cause Mortality with Overweight and Obesity Using Standard Body Mass Index Categories: A Systematic Review and Meta-Analysis. The Journal of the American Medical Association, 309, 71-82.
http://dx.doi.org/10.1001/jama.2012.113905

[3]   Martins, I.J. (2015) Unhealthy Nutrigenomic Diets Accelerate NAFLD and Adiposity in Global Communities. Journal of Molecular and Genetic Medicine, 9, 1-11.

[4]   Martins, I.J. (2015) Nutritional and Genotoxic Stress Contributes to Diabetes and Neurodegenerative Diseases Such as Parkinson’s and Alzheimer’s Diseases. In: Atta-ur-Rahman, Ed., Frontiers in Clinical Drug Research, CNS and Neurological Disorders, Vol. 3, 158-192.
http://dx.doi.org/10.2174/9781608059263114030008

[5]   Guarente, L. (2007) Sirtuins in Aging and Disease. Cold Spring Harbour Symposium Quantitative Biology, 72, 483- 488. http://dx.doi.org/10.1101/sqb.2007.72.024

[6]   Hansen, M.K. and Connolly, T.M. (2008) Nuclear Receptors as Drug Targets in Obesity, Dyslipidemia and Atherosclerosis. Current Opinion in Investigational Drugs, 9, 247-255.

[7]   Harrison, C. (2012) Neurodegenerative Disorders: A Neuroprotective Role for Sirtuin 1. Nature Reviews Drug Discovery, 11, 108.
http://dx.doi.org/10.1038/nrd3672

[8]   Kawada, T., Goto, T., Hirai, S., Kang, M.S., Uemura, T. and Yu, R. (2008) Dietary Regulation of Nuclear Receptors in Obesity-Related Metabolic Syndrome. Asia Pacific Journal of Clinical Nutrition, 17, 126-130.

[9]   Swanson, H.I., Wada, T., Xie, W., Renga, B., Zampella, A. and Distrutti, E. (2013) Role of Nuclear Receptors in Lipid Dysfunction and Obesity-Related Diseases. Drug Metabolism & Disposition, 41, 1-11.
http://dx.doi.org/10.1124/dmd.112.048694

[10]   Cakir, I., Perello, M., Lansari, O., Messier, N.J., Vaslet, C.A. and Nillni, E.A. (2009) Hypothalamic Sirt1 Regulates Food Intake in a Rodent Model System. PLoS ONE, 4, e8322.
http://dx.doi.org/10.1371/journal.pone.0008322

[11]   Kitamura, T. and Sasaki, T. (2012) Hypothalamic Sirt1 and Regulation of Food Intake. Diabetology International, 3, 109-112.
http://dx.doi.org/10.1007/s13340-012-0088-5

[12]   Dietrich, M.O., Antunes, C., Geliang, G., Liu, Z.W., Borok, E. and Nie, Y.Z. (2010) Agrp Neurons Mediate Sirt1’s Action on the Melanocortin System and Energy Balance: Roles for Sirt1 in Neuronal Firing and Synaptic Plasticity. Journal of Neuroscience, 30, 11815-11825.
http://dx.doi.org/10.1523/JNEUROSCI.2234-10.2010

[13]   Schaffhauser, A.O., Madiehe, A.M., Braymer, H.D., Bray, G.A. and York, D.A. (2002) Effects of a High-Fat Diet and Strain on Hypothalamic Gene Expression in Rats. Obesity Research, 10, 1188-1196.
http://dx.doi.org/10.1038/oby.2002.161

[14]   Lee, A.K., Mojtahed-Jaberi, M., Kyriakou, T., Astarloa, E.A.O., Arno, M. and Marshall, N.J. (2010) Effect of High-Fat Feeding on Expression of Genes Controlling Availability of Dopamine in Mouse Hypothalamus. Nutrition, 26, 411- 422.
http://dx.doi.org/10.1016/j.nut.2009.05.007

[15]   Martins, I.J. (2015) Diabetes and Organ Dysfunction in the Developing and Developed. World Global Journal of Medical Research: F Diseases, 15, 1-6.

[16]   Martins, I.J. (2016) Diet and Nutrition Reverse Type 3 Diabetes and Accelerated Aging linked to Global Chronic Diseases. Journal of Diabetes Research Therapy, 2, 1-6.

[17]   Garaulet, M., Esteban Tardido, A., Lee, Y.C., Smith, C.E., Parnell, L.D. and Ordovás, J.M. (2012) SIRT1 and CLOCK 3111T>C Combined Genotype Is Associated with Evening Preference and Weight Loss Resistance in a Behavioral Therapy Treatment for Obesity. International Journal of Obesity, 36, 1436-1441.
http://dx.doi.org/10.1038/ijo.2011.270

[18]   Shimoyama, Y., Suzuki, K., Hamajima, N. and Niwa, T. (2011) Sirtuin 1 Gene Polymorphisms Are Associated with Body Fat and Blood Pressure in Japanese. Translational Research, 157, 339-347.
http://dx.doi.org/10.1016/j.trsl.2011.02.004

[19]   Clark, S.J., Falchi, M., Olsson, B., Jacobson, P., Cauchi, S. and Balkau, B. (2012) Association of Sirtuin 1 (SIRT1) Gene SNPs and Transcript Expression Levels with Severe Obesity. Obesity (Silver Spring), 20, 178-185.
http://dx.doi.org/10.1038/oby.2011.200

[20]   Swaminathan, R. (2003) Magnesium Metabolism and Its Disorders. Clinical Biochemistry Review, 24, 47-66.

[21]   Barbagallo, M. and Dominguez, L.J. (2010) Magnesium and Aging. Current Pharmaceutical Design, 16, 832-839.
http://dx.doi.org/10.2174/138161210790883679

[22]   Killilea, D.W. and Maier, J.A.M. (2008) A Connection between Magnesium Deficiency and Aging: New Insights from Cellular Studies. Magnesium Research, 21, 77-82.

[23]   Rowe, W.J. (2012) Correcting Magnesium Deficiencies May Prolong Life. Clinical Interventions in Aging, 7, 51-54.
http://dx.doi.org/10.2147/CIA.S28768

[24]   Martins, I.J. (2016) Anti-Aging Genes Improve Appetite Regulation and Reverse Cell Senescence and Apoptosis in Global Populations. Advances in Aging Research, 5, 9-26.
http://dx.doi.org/10.4236/aar.2016.51002

[25]   Martins, I.J. (2016) Drug Therapy for Obesity with Anti-Aging Genes Modification. Annals of Obesity and Disorders, 1, 1-4.

[26]   Maier, J.A. (2003) Low Magnesium and Atherosclerosis: An Evidence-Based Link. Molecular Aspects of Medicine, 24, 137-146.
http://dx.doi.org/10.1016/S0098-2997(02)00095-X

[27]   Bo, S. and Pisu, E. (2008) Role of Dietary Magnesium in Cardiovascular Disease Prevention, Insulin Sensitivity and Diabetes. Current Opinion in Lipidology, 19, 50-56.
http://dx.doi.org/10.1097/MOL.0b013e3282f33ccc

[28]   Maxwell, S. (1999) Emergency Management of Acute Myocardial Infarction. British Journal of Clinical Pharmacology, 48, 284-298.
http://dx.doi.org/10.1046/j.1365-2125.1999.00998.x

[29]   Yilmaz, A., Yalta, K., Turgut, O.O., Yilmaz, M.B., Ozyol, A. and Kendirlioglu, O. (2006) Clinical Importance of Elevated CK-MB and Troponin I Levels in Congestive Heart Failure. Advances in Therapy, 23, 1060-1067.
http://dx.doi.org/10.1007/BF02850226

[30]   Zhou, Q. and Liao, J.K. (2009) Statins and Cardiovascular Diseases: From Cholesterol Lowering to Pleiotropy. Current Pharmaceutical Design, 15, 467-478.
http://dx.doi.org/10.2174/138161209787315684

[31]   Hoglund, K., Wallin, A. and Blennow, K. (2006) Effect of Statins on Beta-Amyloid Metabolism in Humans: Potential Importance for the Development of Senile Plaques in Alzheimer’s Disease. Acta Neurology Scandinavia Supplement, 185, 87-92.
http://dx.doi.org/10.1111/j.1600-0404.2006.00691.x

[32]   Lim, S.Y. (2013) Role of Statins in Coronary Artery Disease. Chonnam Medical Journal, 49, 1-6.
http://dx.doi.org/10.4068/cmj.2013.49.1.1

[33]   Touitou, Y., Touitou, C., Bogdan, A., Beck, H. and Reinberg, A. (1978) Serum Magnesium Circadian Rhythm in Human Adults with Respect to Age, Sex and Mental Status. Clinica Chimica Acta, 87, 35-41.
http://dx.doi.org/10.1016/0009-8981(78)90054-2

[34]   Martins, I.J. (2014) The Global Obesity Epidemic Is Related to Stroke, Dementia and Alzheimer’s Disease. JSM Alzheimer’s Disease Related Dementia, 1, 1010-1018.

[35]   Saver, J.L., Starkman, S., Eckstein, M., Stratton, S.J., Pratt, F.D., Hamilton, S., et al. (2015) Prehospital Use of Magnesium Sulfate as Neuroprotection in Acute Stroke. New England Journal of Medicine, 372, 528-536.
http://dx.doi.org/10.1056/NEJMoa1408827

[36]   Cojocaru, I.M., Cojocaru, M., Burcin. C. and Atanasiu, N.A. (2007) Serum Magnesium in Patients with Acute Ische- mic Stroke. Romanian Journal Internal Medicine, 45, 269-273.

[37]   Harpreet, S., Jalodia, S., Gupta, M.S., Talapatra, P., Gupta, V. and Singh, I. (2012) Role of Magnesium Sulfate in Neuroprotection in Acute Ischemic Stroke. Annals of Indian Academy of Neurology, 15, 177-180.
http://dx.doi.org/10.4103/0972-2327.99705

[38]   Karandish, M., Tamimi, M., Shayesteh, A.A., Haghighizadeh, M.H. and Jalali, M.T. (2013) The Effect of Magnesium Supplementation and Weight Loss on Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease. Journal of Research Medical Science, 18, 573-579.

[39]   Martins, I.J. (2013) Increased Risk for Obesity and Diabetes with Neurodegeneration in Developing Countries. Journal of Molecular and Genetic Medicine, S1, 001.

[40]   Martins, I.J. (2014) Induction of NAFLD with Increased Risk of Obesity and Chronic Diseases in Developed Countries. Open Journal of Endocrine and Metabolic Diseases, 4, 90-110.
http://dx.doi.org/10.4236/ojemd.2014.44011

[41]   Martins, I.J. and Creegan, R. (2014) Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease. Health, 6, 1549-1579.
http://dx.doi.org/10.4236/health.2014.612190

[42]   Paolisso, G., Scheen, A., D’Onofrio, F. and Lefèbvre, P. (1990) Magnesium and Glucose Homeostasis. Diabetologia, 33, 511-514.
http://dx.doi.org/10.1007/BF00404136

[43]   Kandeel, F.R., Balon, E., Scott, S. and Nadler, J.L. (1996) Magnesium Deficiency and Glucose Metabolism in Rat Adipocytes. Metabolism, 45, 838-843.
http://dx.doi.org/10.1016/S0026-0495(96)90156-0

[44]   Sales, C.H., Pedrosa, L.F., Lima, J.G., Lemos, T.M. and Colli, C. (2011) Influence of Magnesium Status and Magnesium Intake on the Blood Glucose Control in Patients with Type 2 Diabetes. Clinical Nutrition, 30, 359-364.
http://dx.doi.org/10.1016/j.clnu.2010.12.011

[45]   Pham, P.C., Pham, P.M., Pham, S.V., Miller, J.M. and Pham, P.T. (2007) Hypomagnesemia in Patients with Type 2 Diabetes. Clinical Journal of American Society of Nephrology, 2, 366-373.
http://dx.doi.org/10.2215/CJN.02960906

[46]   Schick, V., Scheiber, J.A., Mooren, F.C., Turi, S., Ceyhan, G.O. and Schnekenburger, J. (2014) Effect of Magnesium Supplementation and Depletion on the Onset and Course of Acute Experimental Pancreatitis. Gut, 63, 1469-1480.
http://dx.doi.org/10.1136/gutjnl-2012-304274

[47]   Papazachariou, I.M., Martinez-Isla, A., Efthimiou, E., Williamson, R.C. and Girgis, S.I. (2000) Magnesium Deficiency in Patients with Chronic Pancreatitis Identified by an Intravenous Loading Test. Clinica Chimica Acta, 302, 145-154.
http://dx.doi.org/10.1016/S0009-8981(00)00363-6

[48]   Sartori, S.B., Whittle, N., Hetzenauer, A. and Singewald, N. (2012) Magnesium Deficiency Induces Anxiety and HPA Axis Dysregulation: Modulation by Therapeutic Drug Treatment. Neuropharmacology, 62, 304-312.
http://dx.doi.org/10.1016/j.neuropharm.2011.07.027

[49]   Morris, M.E. (1992) Brain and CSF Magnesium Concentrations during Magnesium Deficit in Animals and Humans: Neurological Symptoms. Magnesium Research, 5, 303-313.

[50]   Pochwat, B., Sowa-Kucma, M., Kotarska, K., Misztak, P., Nowak, G. and Szewczyk, B. (2015) Antidepressant-Like Activity of Magnesium in the Olfactory Bulbectomy Model Is Associated with the AMPA/BDNF Pathway. Psycho- pharmacology (Berl), 232, 355-367.
http://dx.doi.org/10.1007/s00213-014-3671-6

[51]   Durlach, J., Bac, P., Durlach, V., Bara, M. and Guiet-Bara, A. (1997) Neurotic, Neuromuscular and Autonomic Nervous Form of Magnesium Imbalance. Magnesium Research, 10, 169-195.

[52]   Kirov, G.K. and Tsachev, K.N. (1990) Magnesium, Schizophrenia and Manic-Depressive Disease. Neuropsychobiology, 23, 79-81.
http://dx.doi.org/10.1159/000119431

[53]   de Baaij, J.H., Hoenderop, J.G. and Bindels, R.J. (2012) Regulation of Magnesium Balance: Lessons Learned from Human Genetic Disease. Clinical Kidney Journal, 5, i15-i24.
http://dx.doi.org/10.1093/ndtplus/sfr164

[54]   McCaughey, S.A. and Tordoff, M.G. (2002) Magnesium Appetite in the Rat. Appetite, 38, 29-38.
http://dx.doi.org/10.1006/appe.2001.0443

[55]   Sales, C.H., Santos, A.R., Cintra, D.E. and Colli, C. (2014) Magnesium-Deficient High-Fat Diet: Effects on Adiposity, Lipid Profile and Insulin Sensitivity in Growing Rats. Clinical Nutrition, 33, 879-888.
http://dx.doi.org/10.1016/j.clnu.2013.10.004

[56]   Nielsen, F.H. (2009) Dietary Fatty Acid Composition Alters Magnesium Metabolism, Distribution, and Marginal Deficiency Response in Rats. Magnesium Research, 22, 280-288.

[57]   Ribeiro, M.C., Avila, D.S., Barbosa, N.B., Meinerz, D.F., Waczuk, E.P. and Hassan, W. (2013) Hydrochlorothiazide and High-Fat Diets Reduce Plasma Magnesium Levels and Increase Hepatic Oxidative Stress in Rats. Magnesium Research, 26, 32-40.

[58]   Rayssiguier, Y., Gueux, E. and Weiser, D. (1981) Effect of Magnesium Deficiency on Lipid Metabolism in Rats Fed a High Carbohydrate Diet. Journal of Nutrition, 111, 1876-1883.

[59]   Stamatelopoulos, K., Sibbing, D., Rallidis, L.S., Georgiopoulos, G., Stakos, D. and Braun, S. (2015) Amyloid-Beta(1-40) and the Risk of Death from Cardiovascular Causes in Patients with Coronary Heart Disease. Journal of American College of Cardiology, 65, 904-916.
http://dx.doi.org/10.1016/j.jacc.2014.12.035

[60]   Williams, B. (2015) Amyloid Beta and Cardiovascular Disease: Intriguing Questions Indeed. Journal of American College of Cardiology, 65, 917-919.
http://dx.doi.org/10.1016/j.jacc.2015.01.013

[61]   Bates, K.A., Sohrabi, H.R., Rodrigues, M., Beilby, J., Dhaliwal, S.S. and Taddei, K. (2009) Association of Cardiovascular Factors and Alzheimer’s Disease Plasma Amyloid-beta Protein in Subjective Memory Complainers. Journal of Alzheimer’s Disease, 17, 305-318.

[62]   Libby, P. (2006) Inflammation and Cardiovascular Disease Mechanisms. American Journal of Clinical Nutrition, 83, 456S-460S.

[63]   Martins, I.J. (2015) Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. International Journal of Molecular Science, 16, 29554-29573.
http://dx.doi.org/10.3390/ijms161226190

[64]   Martins, I.J. (2015) Unhealthy Diets Determine Benign or Toxic Amyloid Beta States and Promote Brain Amyloid Beta Aggregation. Austin Journal of Clinical Neurology, 2, 1060-1066.

[65]   Martins, I.J. (2015) Diabetes and Cholesterol Dyshomeostasis Involve Abnormal α-Synuclein and Amyloid Beta Transport in Neurodegenerative Diseases. Austin Alzheimer’s Journal of Parkinson’s Disease, 2, 1020-1028.

[66]   Martins, I.J. (2015) LPS Regulates Apolipoprotein E and Aβ Interactions with Effects on Acute Phase Proteins and Amyloidosis. Advances in Aging Research, 4, 69-77.
http://dx.doi.org/10.4236/aar.2015.42009

[67]   Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L. and Beyreuther, K. (1985) Amyloid Plaque core Protein in Alzheimer’s Disease and Down Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245-4249.
http://dx.doi.org/10.1073/pnas.82.12.4245

[68]   Bodovitz, S. and Klein, W.L. (1996) Cholesterol Modulates α-Secretase Cleavage of Amyloid Precursor Protein. Jour- nal of Biological Chemistry, 271, 4436-4440.
http://dx.doi.org/10.1074/jbc.271.8.4436

[69]   Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, E., Mendiaz, A. and Denis, P. (1999) Beta-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Trans-Membrane Aspartic Protease BACE. Science, 286, 735-741.
http://dx.doi.org/10.1126/science.286.5440.735

[70]   Esch, F.S., Keim, P.S., Beattie, E.C., Blacher, R.W., Culwell, A.R. and Oltersdorf, T. (1990) Cleavage of Amyloid Beta Peptide during Constitutive Processing of Its Precursor. Science, 248, 1122-1124.
http://dx.doi.org/10.1126/science.2111583

[71]   Soriano, S., Chyung, A.S., Chen, X., Stokin, G.B., Lee, V.N. and Koo, E.H. (1999) Expression of β-Amyloid Precursor Protein-CD3γ Chimeras to Demonstrate the Selective Ge-Neration of Amyloid β1-40 and Amyloid β1-42 Peptides within Secretory and Endocytic Compartments. Journal of Biological Chemistry, 274, 32295-32300.
http://dx.doi.org/10.1074/jbc.274.45.32295

[72]   Martins, I.J., Gupta, V., Wilson, A.C., Fuller, S.J. and Martins, R.N. (2014) Interactions between ApoE and Amyloid Beta and Their Relationship to Nutriproteomics and Neurodegeneration. Current Proteomics, 11, 173-183.

[73]   Nassir, F., Mazur, A., Giannoni, F., Gueux, E., Davidson, N.O. and Rayssiguier, Y. (1995) Magnesium Deficiency Modulates Hepatic Lipogenesis and Apolipoprotein Gene Expression in the Rat. Biochimica Biophysica Acta, 1257, 125-132.
http://dx.doi.org/10.1016/0005-2760(95)00065-K

[74]   Ravn, H.B., Korsholm, T.L. and Falk, E. (2001) Oral Magnesium Supplementation Induces Favorable Antiatherogenic Changes in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis Vascular Biology, 21, 858-862.
http://dx.doi.org/10.1080/07315724.2007.10719593

[75]   Olatunji, L.A. and Soladoye, A.O. (2007) Effect of Increased Magnesium Intake on Plasma Cholesterol, Triglyceride and Oxidative Stress in Alloxan-Diabetic Rats. African Journal of Medical Science, 36, 155-161.

[76]   Zhou, Q., Mahfouz, M.M. and Kummerow, F.A. (1994) Effect of Dietary Magnesium Deficiency with/without Cholesterol Supplementation on Phospholipid Content in Liver, Plasma and Erythrocytes of Rabbits. Magnesium Research, 7, 23-30.

[77]   Nielsen, F.H., Milne, D.B., Klevay, L.M., Gallagher, S. and Johnson, L. (2007) Dietary Magnesium Deficiency Induces Heart Rhythm Changes, Impairs Glucose Tolerance, and Decreases Serum Cholesterol in Post Menopausal Women. Journal of American College of Nutrition, 26, 121-132.
http://dx.doi.org/10.1080/07315724.2007.10719593

[78]   Martins, I.J. and Fernando, W. (2014) High Fibre Diets and Alzheimer’s Disease. Food and Nutrition Sciences, 5, 410- 424.
http://dx.doi.org/10.4236/fns.2014.54049

[79]   Hayashi, H., Kimura, N., Yamagauchi, H., Hasegawa, K., Yokoseki, T. and Shibata, M. (2004) A Seed for Alz-Heimer Amyloid in the Brain. Journal of Neuroscience, 24, 4894-4902.
http://dx.doi.org/10.1523/JNEUROSCI.0861-04.2004

[80]   Bieschke, J., Zhang, Q., Powers, E.T., Lerner, R.A. and Kelly, J.W. (2005) Oxidative Metabolites Accelerate Alzheimer’s Amyloidogenesis by a Two Step Mechanism, Eliminating the Requirement for Nucleation. Biochemistry, 44, 4977-4983.
http://dx.doi.org/10.1021/bi0501030

[81]   Yu, J., Sun, M., Chen, Z., Lu, J., Liu, Y. and Zhou, L. (2010) Magnesium Modulates Amyloid-Beta Protein Precursor Trafficking and Processing. Journal of Alzheimer’s Disease, 20, 1091-1106.

[82]   Van Den Heuvel, C., Finnie, J.W., Blumbergs, P.C., Manavis, J., Jones, N.R. and Reilly, P.L. (2000) Upregulation of Neuronal Amyloid Precursor Protein (APP) and APP mRNA Following Magnesium Sulphate (MgSO4) Therapy in Traumatic Brain Injury. Journal of Neurotrauma, 17, 1041-1053.
http://dx.doi.org/10.1089/neu.2000.17.1041

[83]   Yu, X., Guan, P.-P., Guo, J.-W., Wang, Y., Cao, L.-L. and Xu, G.-B. (2015) By Suppressing the Expression of Anterior Pharynx-Defective-1α and -1β and Inhibiting the Aggregation of β-Amyloid Protein, Magnesium Ions Inhibit the Cognitivedecline of Amyloid Precursor Protein/Presenilin 1 Trans-Genic Mice. FASEB Journal, 29, 5044-5058.
http://dx.doi.org/10.1096/fj.15-275578

[84]   Li, W., Yu, J., Liu, Y., Huang, X., Abumaria, N. and Zhu, Y. (2013) Elevation of Brain Magnesium Prevents and Reverses Cognitive Deficits and Synaptic Loss in Alzheimer’s Disease Mouse Model. Journal of Neuroscience, 33, 8423- 8441.
http://dx.doi.org/10.1523/JNEUROSCI.4610-12.2013

[85]   Xu, Z.P., Li, L., Bao, J., Wang, Z.H., Zeng, J. and Liu, E.J. (2014) Magnesium Protects Cognitive Functions and Synaptic Plasticity in Streptozotocin-Induced Sporadic Alzheimer’s Model. PLoS ONE, 9, e108645.
http://dx.doi.org/10.1371/journal.pone.0108645

[86]   Altura, B.M., Shah, N.C., Shah, G.J., Li, W., Zhang, A. and Zheng, T. (2013) Magnesium Deficiency Upregulates Sphingomyelinases in Cardiovascular Tissues and Cells: Cross-Talk among Proto-Oncogenes, Mg2+, NF-κB and Ceramide and Their Potential Relationships to Resistant Hypertension, Atherogenesis and Cardiac Failure. International Journal of Clinical Experimental Medicine, 6, 861-879.

[87]   Altura, B.M., Shah, N.C., Shah, G., Zhang, A., Li, W., Zheng, T., Perez-Albela, J.L., et al. (2012) Short-Term Magnesium Deficiency Upregulates Ceramide Synthase in Cardiovascular Tissues and Cells: Cross-Talk among Cytokines, Mg2+, NF-κB, and de Novo Ceramide. American Journal Physiology Heart Circulation Physiology, 302, H319-H332.
http://dx.doi.org/10.1152/ajpheart.00453.2011

[88]   Radhakrishnan, J., Remuzzi, G., Saran, R., Williams, D.E., Rios-Burrows, N. and Powe, N. (2014) Taming the Chronic Kidney Disease Epidemic: A Global View of Surveillance Efforts. Kidney International, 86, 246-250.
http://dx.doi.org/10.1038/ki.2014.190

[89]   Coskuner, O. and Murray, I.V. (2014) Adenosine Triphosphate (ATP) Reduces Amyloid-β Protein Misfolding in Vitro. Journal of Alzheimer’s Disease, 41, 561-574.

[90]   Schmidt, C., Lepsverdize, E., Chi, S.L., Das, A.M., Pizzo, S.V., Dityatev, A. and Schachner, M. (2008) Amyloid Precursor Protein and Amyloid Beta-Peptide Bind to ATP Synthase and Regulate Its Activity at the Surface of Neural Cells. Molecular Psychiatry, 13, 953-969.
http://dx.doi.org/10.1038/sj.mp.4002077

[91]   Ko, Y.H., Hong, S. and Pedersen, P.L. (1999) Chemical Mechanism of ATP Synthase. Magnesium Plays a Pivotal Role in Formation of the Transition State Where ATP Is Synthesized from ADP and Inorganic Phosphate. Journal of Biological Chemistry, 274, 28853-28856.
http://dx.doi.org/10.1074/jbc.274.41.28853

[92]   Fox, C., Ramsoomair, D. and Carter, C. (2001) Magnesium: Its Proven and Potential Clinical Significance. South Medical Journal, 94, 1195-1201.
http://dx.doi.org/10.1097/00007611-200112000-00013

[93]   Kubota, T., Shindo, Y., Tokuno, K., Komatsu, H., Ogawa, H. and Kudo, S. (2005) Mitochondria Are Intracellular Magnesium Stores: Investigation by Simultaneous Fluorescent Imagings in PC12 Cells. Biochimica Biophysica Acta, 15, 19-28.
http://dx.doi.org/10.1016/j.bbamcr.2004.10.013

[94]   Shah, N.C., Shah, G.J., Li, Z., Jiang, X.C., Altura, B.T. and Altura, B.M. (2014) Short-Term Magnesium Deficiency Downregulates Telomerase, Upregulates Neutral Sphingomyelinase and Induces Oxidative DNA Damage in Cardiovascular Tissues: Relevance to Atherogenesis, Cardiovascular Diseases and Aging. International Journal of Clinical Experimental Medicine, 7, 497-514.

[95]   Zhang, B., Chen, J., Cheng, A.S. and KO, B.C. (2014) Depletion of Sirtuin 1 (SIRT1) Leads to Epigenetic Modifications of Telomerase (TERT) Gene in Hepatocellular Carcinoma Cells. PLoS ONE, 9, e84931.
http://dx.doi.org/10.1371/journal.pone.0084931

[96]   Palacios, J.A., Herranz, D., De Bonis, M.L., Velasco, S., Serrano, M. and Blasco, M.A. (2010) SIRT1 Contributes to Telomere Maintenance and Augments Global Homologous Recombination. Journal of Cell Biology, 191, 1299-1313.
http://dx.doi.org/10.1083/jcb.201005160

[97]   Draper, D.E. (2004) A Guide to Ions and RNA Structure. RNA, 10, 335-343.
http://dx.doi.org/10.1261/rna.5205404

[98]   Misra, V.K. and Draper, D.E. (1998) On the Role of Magnesium Ions in RNA Stability. Biopolymers, 48, 113-135.
http://dx.doi.org/10.1002/(SICI)1097-0282(1998)48:2<113::AID-BIP3>3.0.CO;2-Y

[99]   Serra, M.J., Baird, J.D., Dale, T., Fey, B.L., Retatagos, K. and Westhof, E. (2002) Effects of Magnesium Ions on the Stabilization of RNA Oligomers of Defined Structures. RNA, 8, 307-323.
http://dx.doi.org/10.1017/S1355838202024226

[100]   Hartwig, A. (2001) Role of Magnesium in Genomic Stability. Mutation Research, 475, 113-121.
http://dx.doi.org/10.1016/S0027-5107(01)00074-4

[101]   Littlefield, N.A., Hass, B.S., James, S.J. and Poirier, L.A. (1994) Protective Effect of Magnesium on DNA Strand Breaks Induced by Nickel or Cadmium. Cell Biology Toxicology, 10, 127-135.
http://dx.doi.org/10.1007/BF00756493

[102]   Xue, Y., Wang, S. and Feng, X. (2009) Influence of Magnesium Ion on the Binding of p53 DNA-Binding Domain to DNA-Response Elements. Journal of Biochemistry, 146, 77-85.
http://dx.doi.org/10.1093/jb/mvp048

[103]   Matsusaka, H., Ide, T., Matsushima, S., Ikeuchi, M., Kubota, T. and Sunagawa, K. (2006) Targeted Deletion of p53 Prevents Cardiac Rupture after Myocardial Infarction in Mice. Cardiovascular Research, 70, 457-465.
http://dx.doi.org/10.1016/j.cardiores.2006.02.001

[104]   Zhang, Y., Kohler, K., Xu, J., Lu, D., Braun, T. and Schlitt, A. (2011) Inhibition of p53 after Acute Myocardial Infarction: Reduction of Apoptosis Is Counteracted by Disturbed Scar Formation and Cardiac Rupture. Journal of Molecular Cell Cardiology, 50, 471-478.
http://dx.doi.org/10.1016/j.yjmcc.2010.11.006

[105]   McAlindon, E., Bucciarelli-Ducci, C., Suleiman, M.S. and Baumbach, A. (2015) Infarct Size Reduction in Acute Myocardial Infarction. Heart, 101, 155-160.
http://dx.doi.org/10.1136/heartjnl-2013-304289

[106]   Chong, Z.Z., Wang, S., Shang, Y.C. and Maiese, K. (2102) Targeting Cardiovascular Disease with Novel SIRT1 Pathways. Future Cardiology, 8, 89-100.
http://dx.doi.org/10.2217/fca.11.76

[107]   Shimoyama, Y., Mitsuda, Y., Tsuruta, Y., Suzuki, K., Hamajima, N. and Niwa, T. (2012) SIRTUIN 1 Gene Polymorphisms Are Associated with Cholesterol Metabolism and Coronary Artery Calcification in Japanese Hemodialysis Patients. Journal of Renal Nutrition, 22, 114-119.
http://dx.doi.org/10.1053/j.jrn.2011.10.025

[108]   Winnik, S., Auwerx, J., Sinclair, D.A. and Matter, C.M. (2015) Protective Effects of Sirtuins in Cardiovascular Diseases: From Bench to Bedside. European Heart Journal, 36, 3404-3412.
http://dx.doi.org/10.1093/eurheartj/ehv290

[109]   Stanika, R.I., Winters, C.A., Pivovarova, N.B. and Andrews, S.B. (2010) Differential NMDA Receptor-Dependent Calcium Loading and Mitochondrial Dysfunction in CA1 vs. CA3 Hippocampal Neurons. Neurobiology Disease, 37, 403-411.
http://dx.doi.org/10.1016/j.nbd.2009.10.020

[110]   Peng, T.I., Jou, M.J., Sheu, S.S. and Greenamyre, J.T. (1998) Visualization of NMDA Receptor-Induced Mitochondrial Calcium Accumulation in Striatal Neurons. Experimental Neurology, 149, 1-12.
http://dx.doi.org/10.1006/exnr.1997.6599

[111]   Poleszak, E., Wlaz, P., Wróbel, A., Fidecka, S. and Nowak, G. (2008) NMDA/Glutamate Mechanism of Magnesium- Induced Anxiolytic-Like Behavior in Mice. Pharmacology Reports, 60, 665-663.

[112]   Poulaki, V., Benekou, A., Bozas, E., Bolaris, S. and Stylianopoulou, F. (1999) p53 Expression and Regulation by NMDA Receptors in the Developing Rat Brain. Journal of Neuroscience Research, 56, 427-440.
http://dx.doi.org/10.1002/(SICI)1097-4547(19990515)56:4<427::AID-JNR10>3.0.CO;2-J

[113]   Michán, S., Li, Y., Chou, M.M., Parrella, E., Ge, H. and Long, J.M. (2010) SIRT1 Is Essential for Normal Cognitive Function and Synaptic Plasticity. Journal of Neuroscience, 30, 9695-9707.
http://dx.doi.org/10.1523/JNEUROSCI.0027-10.2010

[114]   Martins, I.J. (2015) Nutritional Diets Accelerate Amyloid Beta Metabolism and Prevent the Induction of Chronic Diseases and Alzheimer’s Disease. Photon eBooks, 1-48.

[115]   Howard, A.B., Alexander, R.W. and Taylor, W.R. (1995) Effects of Magnesium on Nitric Oxide Synthase Activity in Endothelial Cells. American Journal of Physiology, 269, C612-C618.

[116]   Pearson, P.J., Evora, P.R., Seccombe, J.F. and Schaff, H.V. (1998) Hypomagnesemia Inhibits Nitric Oxide Release from Coronary Endothelium: Protective Role of Magnesium Infusion after Cardiac Operations. Annals of Thoracic Surgery, 65, 967-972.
http://dx.doi.org/10.1016/S0003-4975(98)00020-4

[117]   Teragawa, H., Kato, M., Yamagata, T., Matsuura, H. and Kajiyama, G. (2001) Magnesium Causes Nitric Oxide Independent Coronary Artery Vasodilation in Humans. Heart, 86, 212-216.
http://dx.doi.org/10.1136/heart.86.2.212

[118]   Finckenberg, P., Merasto, S., Louhelainen, M., Lindgren, L., Vapaatalo, H. and Müller, D.N. (2005) Magnesium Supplementation Prevents Angiotensin II-Induced Myocardial Damage and CTGF Overexpression. Journal of Hypertension, 23, 375-380.

[119]   Sapna, S., Ranjith, S.K. and Shivakumar, K. (2006) Cardiac Fibrogenesis in Magnesium Deficiency: A Role for Circulating Angiotensin II and Aldosterone. American Journal of Physiology Heart Circulation Physiology, 291, H436- H440.
http://dx.doi.org/10.1152/ajpheart.01185.2005

[120]   Dai, T., Ramirez-Correa, G. and Gao, W.D. (2006) Apelin Increases Contractility in Failing Cardiac Muscle. European Journal of Cardiology, 553, 222-228.
http://dx.doi.org/10.1016/j.ejphar.2006.09.034

[121]   Ichihara, A., Suzuki, H. and Saruta, T. (1993) Effects of Magnesium on the Renin-Angiotensin-Aldosterone System in Human Subjects. Journal of Laboratory Clinical Medicine, 122, 432-440.

[122]   Sipes, S.L., Weiner, C.P., Gellhaus, T.M. and Goodspeed, J.D. (1989) The Plasma Renin-Angiotensin System in Preeclampsia: Effects of Magnesium Sulfate. Obstetrics Gynecology, 73, 934-937.

[123]   Touyz, R.M. and Schiffrin, E.L. (1993) The Effect of Angiotensin II on Platelet Intracellular Free Magnesium and Calcium Ionic Concentrations in Essential Hypertension. Journal of Hypertension, 11, 551-558.
http://dx.doi.org/10.1097/00004872-199305000-00011

[124]   Herencia, C., Rodríguez-Ortiz, M.E., Munoz-Castaneda, J.R., Martinez-Moreno, J.M., Canalejo, R. and Montes de Oca, A. (2015) Angiotensin II Prevents Calcification in Vascular Smooth Muscle Cells by Enhancing Magnesium Influx. European Journal of Clinical Investigation, 45, 1129-1144.
http://dx.doi.org/10.1111/eci.12517

[125]   Agus, Z.S., Kelepouris, E., Dukes, I. And Morad, M. (1989) Cytosolic Magnesium Modulates Calcium Channel Activity in Mammalian Ventricular Cells. American Journal of Physiology, 256, C452-C455.

[126]   Paunier, L. (1992) Effect of Magnesium on Phosphorus and Calcium Metabolism. Monatsschr Kinderheilkd, 140, S17-S20.

[127]   Dai, Q., Motley, S.S., Smith, J.A., Concepcion, R., Barocas, D., Byerly, S., et al. (2011) Blood Magnesium, and the Interaction with Calcium, on the Risk of High-Grade Prostate Cancer. PLoS ONE, 6, e18237.
http://dx.doi.org/10.1371/journal.pone.0018237

[128]   Babich, M.F. and Kalin, M.L. (1989) Calcium-Channel Blockers in Acute Myocardial Infarction. Drug Intelligence and Clinical Pharmacology, 23, 538-547.

[129]   Wang, C., Liu, N., Luan, R., Li, Y., Wang, D. and Zou, W. (2013) Apelin Protects Sarcoplasmic Reticulum Function and Cardiac Performance in Ischaemia-Reperfusion by Attenuating Oxidation of Sarcoplasmic Reticulum Ca2+- ATPase and Ryanodine Receptor. Cardiovascular Research, 100, 114-124.
http://dx.doi.org/10.1093/cvr/cvt160

[130]   Markaki, A., Kyriazis, J., Stylianou, K., Fragkiadakis, G.A., Perakis, K. and Margioris, A.N. (2012) The Role of Serum Magnesium and Calcium on the Association between Adiponectin Levels and All-Cause Mortality in End-Stage Renal Disease Patients. PLoS ONE, 7, e52350.
http://dx.doi.org/10.1371/journal.pone.0052350

[131]   Cassidy, A., Skidmore, P., Rimm, E.B., Welch, A., Fairweather-Tait, S. and Skinner, J. (2009) Plasma Adiponectin Concentrations Are Associated with Body Composition and Plant-Based Dietary Factors in Female Twins. Journal of Nutrition, 139, 353-358.
http://dx.doi.org/10.3945/jn.108.098681

[132]   Toth, P.P. (2005) Adiponectin and High-Density Lipoprotein: A Metabolic Association through Thick and Thin. European Heart Journal, 26, 1579-1581.
http://dx.doi.org/10.1093/eurheartj/ehi374

[133]   Pischon, T., Girman, C.J., Hotamisligil, G.S., Rifai, N., Hu, F.B. and Rimm, E.B. (2004) Plasma Adiponectin Levels and Risk of Myocardial Infarction in Men. JAMA, 291, 1730-1737.
http://dx.doi.org/10.1001/jama.291.14.1730

[134]   Teoh, H., Strauss, M.H., Szmitko, P.E. and Verma, S. (2006) Adiponectin and Myocardial Infarction: A Paradox or a Paradigm? European Heart Journal, 27, 2266-2268.
http://dx.doi.org/10.1093/eurheartj/ehl248

[135]   Banga, A., Bodles, A.M., Rasouli, N., Ranganathan, G., Kern, P.A. and Owens, R.J. (2008) Calcium Is Involved in Formation of High Molecular Weight Adiponectin. Metabolic Syndrome Related Disorders, 6, 103-111.
http://dx.doi.org/10.1089/met.2007.0033

[136]   Henstridge, D.C. and Febbraio, M.A. (2010) Adiponectin Sparks an Interest in Calcium. Cell Metabolism, 11, 447-449.
http://dx.doi.org/10.1016/j.cmet.2010.05.007

[137]   Wu, Q., Zheng, R., Srisai, D., McKnight, G.S. and Palmiter, R.D. (2013) NR2B Subunit of the NMDA Glutamate Receptor Regulates Appetite in the Parabrachial Nucleus. Proceedings of the National Academy of Sciences of the United States of America, 110, 14765-14770.
http://dx.doi.org/10.1073/pnas.1314137110

[138]   Xu, C., Bai, B., Fan, P., Cai, Y., Huang, B. and Law, I.K. (2013) Selective Overexpression of Human SIRT1 in Adipose Tissue Enhances Energy Homeostasis and Prevents the Deterioration of Insulin Sensitivity with Ageing in Mice. American Journal Translational Research, 5, 412-426.

[139]   Choi, Y., Um, S.J. and Park, T. (2013) Indole-3-Carbinol Directly Targets SIRT1 to Inhibit Adipocyte Differentiation. International Journal of Obesity (London), 37, 881-884.
http://dx.doi.org/10.1038/ijo.2012.158

[140]   Siersbaek, R., Nielsen, R. and Mandrup, S. (2010) PPAR Gamma in Adipocyte Differentiation and Metabolism— Novel Insights from Genome-Wide Studies. FEBS Journal, 584, 3242-3249.
http://dx.doi.org/10.1016/j.febslet.2010.06.010

[141]   Korner, A., Wabitsch, M., Seidel, B., Fischer-Posovszky, P., Berthold, A., Stumvoll, M., et al. (2005) Adiponectin Expression in Humans Is Dependent on Differentiation of Adipocytes and Down-Regulated by Humoral Serum Components of High Molecular Weight. Biochemistyr Biophysica Research Communications, 337, 540-550.
http://dx.doi.org/10.1016/j.bbrc.2005.09.064

[142]   Lee, M.J., Wu, Y. and Fried, S.K. (2010) Adipose Tissue Remodeling in Pathophysiology of Obesity. Current Opinion Clinical Nutrition and Metabolic Care, 13, 371-376.
http://dx.doi.org/10.1097/MCO.0b013e32833aabef

[143]   Qiao, L. and Shao, J. (2006) SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-Binding Protein Alpha Transcriptional Complex. Journal of Biological Chemistry, 281, 39915-39924.
http://dx.doi.org/10.1074/jbc.M607215200

[144]   Qiang, L., Wang, H. and Farmer, S.R. (2007) Adiponectin Secretion Is Regulated by SIRT1 and the Endoplasmic Reticulum Oxidoreductase Ero1-L Alpha. Molecular Cellular Biology, 27, 4698-4707.
http://dx.doi.org/10.1128/MCB.02279-06

[145]   Shen, Z., Liang, X., Rogers, C.Q., Rideout, D. and You, M. (2010) Involvement of Adiponectin-SIRT1-AMPK Signaling in the Protective Action of Rosiglitazone against Alcoholic Fatty Liver in Mice. American Journal of Physiology and Gastrointestinal Liver Physiology, 298, G364-G374.
http://dx.doi.org/10.1152/ajpgi.00456.2009

[146]   Lancaster, G.I. and Febbraio, M.A. (2011) Adiponectin Sphings into Action. Nature Medicine, 17, 37-38.
http://dx.doi.org/10.1038/nm0111-37

[147]   Samad, F., Badeanlou, L., Shah, C. and Yang, G. (2011) Adipose Tissue and Ceramide Biosynthesis in the Pathogenesis of Obesity. In: Cowart, L.A., Eds., Sphingolipids and Metabolic Disease, Springer, New York, 67-86.
http://dx.doi.org/10.1007/978-1-4614-0650-1_5

[148]   Blachnio-Zabielska, A.U., Pulka, M., Baranowski, M., Nikolajuk, A., Zabielski, P. and Górska, M. (2012) Ceramide Metabolism Is Affected by Obesity and Diabetes in Human Adipose Tissue. Journal of Cellular Physiology, 227, 550- 557.
http://dx.doi.org/10.1002/jcp.22745

[149]   Matsuura, F., Oku, H., Koseki, M., Sandoval, J.C., Yuasa-Kawase, M. and Tsubakio-Yamamoto, K. (2007) Adiponectin Accelerates Reverse Cholesterol Transport by Increasing High Density Lipoprotein Assembly in the Liver. Biochemical Biophysica Research Communications, 358, 1091-1095.
http://dx.doi.org/10.1016/j.bbrc.2007.05.040

[150]   Muradian, K. and Schachtschabel, D.O. (2001) The Role of Apoptosis in Aging and Age-Related Disease: Update. Zeitschrift für Gerontologie und Geriatrie, 34, 441-446.
http://dx.doi.org/10.1007/s003910170015

[151]   Sastre, J., Pallardó, F.V. and Vina, J. (2000) Mitochondrial Oxidative Stress Plays a Key Role in Aging and Apoptosis. IUBMB Life, 49, 427-435.
http://dx.doi.org/10.1080/152165400410281

[152]   Pollack, M. and Leeuwenburgh, C. (2001) Apoptosis and Aging: Role of the Mitochondria. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 56, B475-B482.
http://dx.doi.org/10.1093/gerona/56.11.B475

[153]   Takaya, J., Higashino, H. and Kobayashi, Y. (2004) Intracellular Magnesium and Insulin Resistance. Magnesium Research, 17, 126-136.

[154]   Laires, M.J., Monteiro, C.P. and Bicho, M. (2004) Role of Cellular Magnesium in Health and Human Disease. Frontiers in Bioscience, 9, 262-276.
http://dx.doi.org/10.2741/1223

[155]   Turecky, L., Kupcova, V., Szantova, M., Uhlikova, E., Viktorinova, A. and Czirfusz, A. (2006) Serum Magnesium Levels in Patients with Alcoholic and Non-Alcoholic Fatty Liver. Bratislavské lekárske listy, 107, 58-61.

[156]   Castiglioni, S. and Maier, J.A. (2011) Magnesium and Cancer: A Dangerous Liason. Magnesium Research, 24, S92- S100.

[157]   Brooks, C.L. and Gu, W. (2009) How Does SIRT1 Affect Metabolism, Senescence and Cancer? Nature Review Cancer, 9, 123-128.
http://dx.doi.org/10.1038/nrc2562

[158]   Fenton, M.J. and Golenbock, D.T. (1998) LPS-Binding Proteins and Receptors. Journal of Leukocyte Biology, 64, 25- 32.

[159]   Asai, Y., Iwamoto, K. and Watanabe, S. (1998) The Effect of the Lipid a Analog E5531 on Phospholipid Membrane Properties. Federation of European Biochemical Societies Letters, 438, 15-20.
http://dx.doi.org/10.1016/S0014-5793(98)01262-9

[160]   Ciesielski, F., Griffin, D.C., Rittig, M., Moriyón, I. and Bonev, B.B. (2013) Interactions of Lipopolysaccharide with Lipid Membranes, Raft Models—A Solid State NMR Study. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1828, 1731-1742.
http://dx.doi.org/10.1016/j.bbamem.2013.03.029

[161]   Ciesielski, F., Davis, B., Rittig, M., Bonev, B.B. and O’Shea, P. (2012) Receptor-Independent Interaction of Bacterial Lipopolysaccharide with Lipid and Lymphocyte Membranes, the Role of Cholesterol. PLoS ONE, 7, e38677.
http://dx.doi.org/10.1371/journal.pone.0038677

[162]   Tam, M., Gómez, S., González-Gross, M. and Marcos, A. (2003) Possible Roles of Magnesium on the Immune System. European Journal of Clinical Nutrition, 57, 1193-1197.
http://dx.doi.org/10.1038/sj.ejcn.1601689

[163]   Geerlings, S.E. and Hoepelman, A.I. (1999) Immune Dysfunction in Patients with Diabetes Mellitus (DM). FEMS Immunology and Medical Microbiology, 26, 259-265.
http://dx.doi.org/10.1111/j.1574-695X.1999.tb01397.x

[164]   Casqueiro, J., Casqueiro, J. and Alves, C. (2012) Infections in Patients with Diabetes Mellitus: A Review of Pathogenesis. Indian Journal of Endocrinology and Metabolism, 16, 27-36.
http://dx.doi.org/10.4103/2230-8210.94253

[165]   Martinsm I.J., Vilchèze, C., Mortimer, B.C., Bittman, R. and Redgrave, T.G. (1998) Sterol Side Chain Length and Structure Affect the Clearance of Chylomicron-Like Lipid Emulsions in Rats and Mice. Journal Lipid Research, 39, 302-312.

[166]   Dou, M., Ma, A.G., Wang, Q.Z., Liang, H., Li, Y., Yi, X.M., et al. (2009) Supplementation with Magnesium and Vitamin E Were More Effective than Magnesium Alone to Decrease Plasma Lipids and Blood Viscosity in Diabetic Rats. Nutrition Research, 29, 519-524.
http://dx.doi.org/10.1016/j.nutres.2009.07.001

[167]   Tongyai, S., Rayssiguier, Y., Motta, C., Gueux, E., Maurois, P. and Heaton, F.W. (1989) Mechanism of Increased Erythrocyte Membrane Fluidity during Magnesium Deficiency in Weanling Rats. American Journal of Physiology, 257, C270-C276.

[168]   Stamatotos, L. and Silvius, J.R. (1987) Effects of Cholesterol on the Divalent Cation-Mediated Interactions of Vesicles Containing Amino and Choline Phospholipids. Biochimica et Biophysica Acta (BBA)—Biomembranes, 905, 81-90.
http://dx.doi.org/10.1016/0005-2736(87)90011-3

[169]   Desrumaux, C., Risold, P.Y., Schroeder, H., Deckert, V., Masson, D. and Athias, A. (2005) Phospholipid Transfer Protein (PLTP) Deficiency Reduces Brain Vitamin E Content and Increases Anxiety in Mice. FASEB Journal, 19, 296-297.

[170]   Martins, I.J., Hopkins, L., Joll, C.A. and Redgrave, T.G. (1991) Interactions between Model Triacylglycerol-Rich Lipoproteins and High-Density Lipoproteins in Rat, Rabbit and Man. Biochimica et Biophysica Acta (BBA)—Lipids and Lipid Metabolism, 1081, 328-338.
http://dx.doi.org/10.1016/0005-2760(91)90290-X

[171]   Nishida, Y., Ito, S., Ohtsuki, S., Yamamoto, N., Takahashi, T., Iwata, N., et al. (2009) Depletion of Vitamin E Increases Amyloid Beta Accumulation by Decreasing Its Clearances from Brain and Blood in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 284, 33400-33408.
http://dx.doi.org/10.1074/jbc.M109.054056

[172]   Desrumaux, C., Pisoni, A., Meunier, J., Deckert, V., Athias, A. and Perrier, V. (2013) Increased Amyloid-Beta Peptide-Induced Memory Deficits in Phospholipid Transfer Protein (PLTP) Gene Knockout Mice. Neuropsychopharmacology, 38, 817-825.
http://dx.doi.org/10.1038/npp.2012.247

[173]   Munoz, F.J., Solé, M. and Coma, M. (2005) The Protective Role of Vitamin E in Vascular Amyloid Beta-Mediated Damage. In: Harris, J.R. and Fahrenholz, F., Eds., Alzheimer’s Disease, Springer, Berlin, 147-165.
http://dx.doi.org/10.1007/0-387-23226-5_7

[174]   Costa, M., Ortiz, A.M. and Jorquera, J.I. (2012) Therapeutic Albumin Binding to Remove Amyloid-β. Journal of Alzheimer’s Disease, 29, 159-170.

[175]   Bharrhan, S., Chopra, K. and Rishi, P. (2010) Vitamin E Supplementation Modulates Endotoxin-induced Liver Damage in a Rat Model. American Journal of Biomedical Sciences, 2, 51-62.

[176]   Kroll, M.H. and Elin, R.J. (1985) Relationships between Magnesium and Protein Concentrations in Serum. Clinical Chemistry, 31, 244-246.

[177]   Fein. P., Weiss, S., Ramos, F., Singh, P., Chattopadhyay, J. and Avram, M.M. (2014) Serum Magnesium Concentration Is a Significant Predictor of Mortality in Peritoneal Dialysis Patients. Advances in Peritoneal Dialysis, 30, 90-93.

[178]   Ruot, B., Breuillé, D., Rambourdin, F., Bayle, G., Capitan, P. and Obled, C. (2000) Synthesis Rate of Plasma Albumin Is a Good Indicator of Liver Albumin Synthesis in Sepsis. American Journal Physiology Endocrinology Metabolism, 279, E244-E251.

[179]   Wang, X., Li, W., Lu, J., Li, N. and Li, J. (2004) Lipopolysaccharide Suppresses Albumin Expression by Activating NF-KappaB in Rat Hepatocytes. Journal of Surgical Research, 122, 274-279.
http://dx.doi.org/10.1016/j.jss.2004.07.008

[180]   Don, B.R. and Kaysen, G. (2004) Serum Albumin: Relationship to Inflammation and Nutrition. Seminars in Dialysis, 17, 432-437.
http://dx.doi.org/10.1111/j.0894-0959.2004.17603.x

[181]   van der Vusse, G.J. (2009) Albumin as Fatty Acid Transporter. Drug Metabolism and Pharmacokinetics, 24, 300-307. http://dx.doi.org/10.2133/dmpk.24.300

[182]   Charalambous, B.M., Stephens, R.C., Feavers, I.M. and Montgomery, H.E. (2007) Role of Bacterial Endotoxin in Chronic Heart Failure: The Gut of the Matter. Shock, 28, 15-23.
http://dx.doi.org/10.1097/shk.0b013e318033ebc5

[183]   Lew, W.Y. (2003) Endotoxin Attacks the Cardiovascular System: Black Death at the Tollgate. Journal of American College of Cardiology, 42, 1663-1665.
http://dx.doi.org/10.1016/j.jacc.2003.08.006

[184]   Okeke, I.N., Laxminarayan, R., Bhutta, Z.A., Duse, A.G., Jenkins, P., O’Brien, T.F., et al. (2005) Antimicrobial Resistance in Developing Countries. Part I: Recent Trends and Current Status. Lancet Infectious Diseases, 5, 481-493.
http://dx.doi.org/10.1016/S1473-3099(05)70189-4

[185]   Schafer, T., Scheuer, C., Roemer, K., Menger, M.D. and Vollmar, B. (2003) Inhibition of p53 Protects Liver Tissue against Endotoxin-Induced Apoptotic and Necrotic Cell Death. FASEB Journal, 17, 660-667.
http://dx.doi.org/10.1096/fj.02-0774com

[186]   Laires, M.J. and Monteiro, C. (2008) Exercise, Magnesium and Immune Function. Magnesium Research, 21, 92-96.

[187]   Nielsen, F.H. and Lukaski, H.C. (2006) Update on the Relationship between Magnesium and Exercise. Magnesium Research, 19, 180-189.

[188]   Kass, L.S. and Poeira, F. (2015)The Effect of Acute vs Chronic Magnesium Supplementation on Exercise and Recovery on Resistance Exercise, Blood Pressure and Total Peripheral Resistance on Normotensive Adults. Journal of International Society Sports Nutrition, 12, 1-8.
http://dx.doi.org/10.1186/s12970-015-0081-z

[189]   Hartzell, H.C. and White, R.E. (1989) Effects of Magnesium on Inactivation of the Voltage-Gated Calcium Current in Cardiac Myocytes. Journal of General Physiology, 94, 745-767.
http://dx.doi.org/10.1085/jgp.94.4.745

[190]   Restrepo-Angulo, I., De Vizcaya-Ruiz, A. and Camacho, J. (2010) Ion Channels in Toxicology. Journal of Applied Toxicology, 30, 497-512.
http://dx.doi.org/10.1002/jat.1556

[191]   Kass, G.E., Nicotera, P. and Orrenius, S. (1990) Effects of Xenobiotics on Signal Transduction and Ca2+ Mediated Processes in Mammalian Cells. Princess Takamatsu Symposia, 21, 213-226.

[192]   Burgess, J. (2001-2010) Magnesium Absorption and Assimilation.
www.afibers.org

[193]   Magnesium L-Threonate Reviews, Benefits, Safety and Doses. 2013-2016.
www.Nootriment.com

[194]   Martins, I.J. (2016) The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer’s Disease. Proteomes, 4, 1-19.
http://dx.doi.org/10.3390/proteomes4020014

[195]   Leonhard-Marek, S., Gabel, G. and Martens, H. (1998) Effects of Short Chain Fatty Acids and Carbon Dioxide on Magnesium Transport across Sheep Rumen Epithelium. Experimental Physiology, 83, 155-164.
http://dx.doi.org/10.1113/expphysiol.1998.sp004098

[196]   Scharrer, E. and Lutz, T. (1990) Effects of Short Chain Fatty Acids and K on Absorption of Mg and Other Cations by the Colon and Caecum. Zeitschrift für Ernahrungswissenschaft, 29, 162-168.
http://dx.doi.org/10.1007/BF02021554

[197]   Wang, Y., Shi, X., Qi, J., Li, X., Uray, K. and Guan, X. (2012) SIRT1 Inhibits the Mouse Intestinal Motility and Epithelial Proliferation. American Journal of Physiology Gastrointestinal Liver Physiology, 302, G207-G217.
http://dx.doi.org/10.1152/ajpgi.00302.2011

[198]   Golts, N., Snyder, H., Frasier, M., Theisler, C., Choi, P. and Wolozin, B. (2002) Magnesium Inhibits Spontaneous and Iron-Induced Aggregation of Alpha-Synuclein. Journal of Biological Chemistry, 277, 16116-16123.
http://dx.doi.org/10.1074/jbc.M107866200

[199]   Navarro-Otano, J., Gelpi, E., Mestres, C.A., Quintana, E., Rauek, S., Ribalta, T., et al. (2013) Alpha-Synuclein Aggregates in Epicardial Fat Tissue in Living Subjects without Parkinsonism. Parkinsonism Related Disorders, 19, 27-31.
http://dx.doi.org/10.1016/j.parkreldis.2012.07.005

 
 
Top