Back
 ABC  Vol.6 No.3 , June 2016
Structure-Function Relationship of a Gellan Family of Polysaccharide, S-198 Gum, Produced by Alcaligenes ATCC31853
Abstract: The structure-function relationship of a gellan family of polysaccharides, S-198 gum produced by Alcaligenes ATCC31853 was investigated in terms of rheological aspects. The flow curves of S-198 gum showed plastic behavior above 0.3%. Gelation did not occur in S-198 gum solution at low temperature (0), even at 0.8%. Both the viscosity and the elastic modulus remained constant with increasing temperature up to 80?C. The elastic modulus decreased a little with the addition of CaCl2 (6.8 mM), but then once again remained constant up to 80. The highest elastic modulus was observed for deacylated gellan gum with the addition of CaCl2 and increased slightly with increasing temperature up to 80, which was considered to be a transition temperature, after which it decreased rapidly. The elastic modulus of S-198 gum in the presence of urea (4.0 M) was lower than that in aqueous solution at low temperature (0℃), but remained constant with increasing temperature up to 80. The intramolecular associations, (hydrogen bonding and van der Waals forces of attraction), of S-198 gum molecules in aqueous solutions were proposed. The gellan family of polysaccharides, S-198, S-88, S-657, rhamsan, welan and gellan gum, provided a good opportunity to investigate the structure-function relationship for polysaccharides.
Cite this paper: Tako, M. , kitajima, S. , Yogi, T. , Uechi, K. , Onaga, M. , Tamaki, Y. and Uechi, S. (2016) Structure-Function Relationship of a Gellan Family of Polysaccharide, S-198 Gum, Produced by Alcaligenes ATCC31853. Advances in Biological Chemistry, 6, 55-69. doi: 10.4236/abc.2016.63007.
References

[1]   Tako, M. and Nakamura, S. (1986) Indicative Evidence for a Conformational Transition in κ-Carrageenan from Studies of Viscosity-Shear Rate Dependence. Carbohydrate Research, 155, 200-205.
http://dx.doi.org/10.1016/S0008-6215(00)90146-0

[2]   Tako, M. and Nakamura, S. (1986) Synergistic Interaction between Kappa-Carrageenan and Locust-Bean Gum in Aqueous Media. Agricultural and Biological Chemistry, 50, 2817-2822.

[3]   Tako, M., Nakamura, S. and Kohda, Y. (1987) Indicative Evidence for a Conformational Transition in ι-Carrageenan. Carbohydrate Research, 161, 247-253.
http://dx.doi.org/10.1016/S0008-6215(00)90081-8

[4]   Tako, M. and Nakamura, S. (1988) Gelation Mechanism of Agarose. Carbohydrate Research, 180, 277-283.
http://dx.doi.org/10.1016/0008-6215(88)80084-3

[5]   Tako, M., Sakae, A. and Nakamura, S. (1989) Rheological Properties of Gellan Gum in Aqueous Media. Agricultural and Biological Chemistry, 53, 771-776.

[6]   Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. (2009) Molecular Origin for Rheological Characteristics of Native Gellan Gum. Colloid and Polymer Science, 287, 1445-1454.
http://dx.doi.org/10.1007/s00396-009-2112-2

[7]   Tako, M. and Hizukuri, S. (1995) Evidence for Conformational Transitions in Amylose. Journal of Carbohydrate Chemistry, 14, 613-622.
http://dx.doi.org/10.1080/07328309508005362

[8]   Tamaki, Y., Konishi, T. and Tako, M. (2011) Gelation and Retro-gradation Mechanism of Wheat Amylose. Materials, 4, 1763-1775.
http://dx.doi.org/10.3390/ma4101763

[9]   Tako, M. and Hanashiro, I. (1997) Evidence for a Conformational Transition in Curdlan. Polymmer Gels and Networks, 5, 241-250.
http://dx.doi.org/10.1016/S0966-7822(96)00036-6

[10]   Tako, M. and Kohda, Y. (1997) Calcium Induced Association Characteristics of Alginate. Journal of Applied Glycoscience, 44, 153-159.

[11]   Teruya, T., Tamaki, Y., Konishi, T. and Tako, M. (2010) Rheological Characteristics of Alginate Isolated from Commercially Cultured Nemacystus decipins. Journal of Applied Glycoscience, 57, 7-12.
http://dx.doi.org/10.5458/jag.57.7

[12]   Tako, M., Tohma, S., Taira, T. and Ishihara, M. (2003) Gelation Mechanism of Deacetylated Rhamsan Gum. Carbohydrate Polymers, 54, 279-285.
http://dx.doi.org/10.1016/S0144-8617(03)00029-8

[13]   Tako, M., Nagahama, T. and Nomura, D. (1977) Non-Newtonian Behavior and Dynamic Viscoelasticity of Xanthan Gum. Nippon Nogeikagaku Kaishi, 51, 513-517.
http://dx.doi.org/10.1271/nogeikagaku1924.51.8_513

[14]   Tako, M. and Nakamur, S. (1984) Rheological Properties of Deacetylated Xanthan Gum in Aqueous Media. Agricultural and Biological Chemistry, 48, 2987-2993.

[15]   Tako, M. and Nakamura, S. (1987) Rheological Properties of Ca Salt of Xanthan Gum in Aqueous Media. Agricultural and Biological Chemistry, 51, 2919-2923.
http://dx.doi.org/10.1271/bbb1961.51.2919

[16]   Tako, M. and Nakamura, S. (1988) Rheological Properties of Depyruvated Xanthan Gum in Aqueous Media. Agricultural and Biological Chemistry, 52, 1585-1586.
http://dx.doi.org/10.1271/bbb1961.52.1585

[17]   Tako, M. and Nakamura, S. (1989) Evidence for Intramolecular Associations in Xanthan Gum in Aqueous Media. Agricultural and Biological Chemistry, 53, 1941-1946.

[18]   Tako, M. (1992) Molecular Origin for Rheological Characteristics of Xanthan Gum. ACS Symposium Series, 489, 268-281.
http://dx.doi.org/10.1021/bk-1992-0489.ch017

[19]   Tako, M., Asato, A. and Nakamura, S. (1984) Rheological Aspects of the Intermolecular Interaction between Xanthan and Locust Bean Gum in Aqueous Media. Agricultural and Biological Chemistry, 48, 2995-3000.

[20]   Tako, M., Asato, A. and Nakamura, S. (1986) D-Mannose-Specific Interaction between Xanthan and D-Galacto-D-Mannan., 204, 33-36.
http://dx.doi.org/10.1016/0014-5793(86)81382-5

[21]   Tako, M. (1991) Synergistic Interaction between Deacylated Xanthan and Galactomannan. Journal of Carbohydrate Chemistry, 10, 619-633.
http://dx.doi.org/10.1080/07328309108543936

[22]   Tako, M. and Nakamura, S. (1985) Synergistic Interaction between Xanthan and Guar Gum. Carbohydrate Research, 138, 207-213.
http://dx.doi.org/10.1016/0008-6215(85)85104-1

[23]   Tako, M. (1991) Synergisic Interaction between Xanthan and Tara-Bean Gum. Carbohydrate Polymers, 16, 239-252.
http://dx.doi.org/10.1016/0144-8617(91)90111-O

[24]   Pakdee, P., Tako, M., Yokohari, T., Kinjyo, K., Hongo, F. and Yaga, S. (1995) Synergistic Interaction between Xanthan and Galac-tomannan Isolated from Leucaena leucocephala de WIT. Journal of Applied Glycoscience, 42, 105-113.

[25]   Tako, M., Teruya, T., Tamaki, Y and Ohkawa, K. (2010) Co-Gelation Mechanism of Xanthan and Galactomannan. Colloid and Polymer Science, 288, 1161-1166.
http://dx.doi.org/10.1007/s00396-010-2242-6

[26]   Tako, M. (1992) Synergistic Interaction between Xanthan and Konjac Glucomannan in Aqueous Media. Bioscience, Biotechnology, and Biochemistry, 56,1188-1192.
http://dx.doi.org/10.1271/bbb.56.1188

[27]   Tako, M. (1993) Binding Sites for D-Mannose-Specific Interaction between Xanthan and Galactomannan, and Glucomannan. Colloids and Surfaces B: Biointerfaces, 1, 125-131.
http://dx.doi.org/10.1016/0927-7765(93)80043-X

[28]   Tako, M., Qi, Z.Q., Yoza, E. and Toyama, S. (1998) Synergistic Interaction between k-Carrageenan Isolated from Hypnea charoides LLAMOUROUX and Galactomannan on Its Gelation. Food Research Internal, 31, 543-548.
http://dx.doi.org/10.1016/S0963-9969(99)00022-8

[29]   Tako, M. and Nakamura, S. (1988) Synergistic Interaction between Agarose and D-Galacto-D-Mannan in Aqueous Media. Agricultural and Biological Chemistry, 52, 1071-1072.
http://dx.doi.org/10.1271/bbb1961.52.1071

[30]   Tako, M. and Hizukuri, S. (1999) Gelatinization Mechanism of Rice Starch. Journal of Carbohydrate Chemistry, 18, 573-584.
http://dx.doi.org/10.1080/07328309908544020

[31]   Tako, M. (2000) Gelatinization Characteristics of Rice Starch (Yukihikari). Journal of Applied Glycoscience, 47, 187-192.
http://dx.doi.org/10.5458/jag.47.187

[32]   Tako, M. and Hizukuri, S. (2000) Retrogradation Mechanism of Rice Starch. Cereal Chemistry, 77, 473-477.
http://dx.doi.org/10.1094/CCHEM.2000.77.4.473

[33]   Tako, M. and Hizukuri, S. (2003) Gelatinization Mechanism of Potato Starch. Carbohydrate Polymers, 48, 397-401.
http://dx.doi.org/10.1016/S0144-8617(01)00287-9

[34]   Tako, M., Tamaki, Y., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2008) Gelatinization and Retrogradation Characteristics of Wheat (Rosella) Starch. Food Research International, 41, 797-802.
http://dx.doi.org/10.1016/j.foodres.2008.07.002

[35]   Tako, M., Tamaki, Y., Teruya, T., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2009) Rheological Characteristics of Halberd Wheat Starch. Starch, 61, 275-281.
http://dx.doi.org/10.1002/star.200800073

[36]   Tako, M. (2000) Structural Principles of Polysaccharide Gels. Journal of Applied Glycoscience, 47, 49-53.
http://dx.doi.org/10.5458/jag.47.49

[37]   Tako, M. (2015) The Principle of Polysaccharide Gels. Advances in Bioscience and Biotechnology, 6, 22-36.
http://dx.doi.org/10.4236/abb.2015.61004

[38]   Tako, M., Tamaki, Y., Teruya, T. and Takeda, Y. (2014) The Principles of Starch Gelatinization and Retrogradation. Food and Nutrition Sciences, 5, 280-291.
http://dx.doi.org/10.4236/fns.2014.53035

[39]   Kang, K.S., Veeder, G.T., Mirrasoul, P.J., Kaneko, T. and Cottrell, I.W. (1982) Agar-Like Polysaccharide Produced by a Pseudomonas Species: Production and Basic Properties. Applied and Environmental Microbiology, 43, 1086-1091.

[40]   Sandford, P.A., Cottrell, I.W. and Pettitt, D.J. (1984) Microbial Polysaccha-rides: New Products and Their Commercial Applications. Pure and Applied Chemistry, 56, 879-892.
http://dx.doi.org/10.1351/pac198456070879

[41]   Osmalek, T., Froelich, A. and Tasarek, S. (2014) Application of Gellan Gum in Pharmacy and Medicine. International Journal of Pharmaceutics, 466, 328-340.
http://dx.doi.org/10.1016/j.ijpharm.2014.03.038

[42]   Moxon, S.R. and Smith, A.M. (2016) Controlling the Rheology of Gellan Gum Hydrogels in Cell Culture. International Journal of Biological Macromolecules, 84, 79-86.
http://dx.doi.org/10.1016/j.ijbiomac.2015.12.007

[43]   O’Neill, M.A., Selvendran, R.R. and Morris, V.J. (1983) Structure of the Acidic Extracellular Gelling Polysaccharide Produced by Pseudomonas elodea. Carbohydrate Research, 124, 123-133.
http://dx.doi.org/10.1016/0008-6215(83)88360-8

[44]   Jansson, P.E., Lindberg, B. and Sandford, P.A. (1983) Structural Studies of Gellan Gum, an Extracellular Polysaccharide Elaborated by Pseudomonas elodea. Carbohydrate Research, 124, 135-139.
http://dx.doi.org/10.1016/0008-6215(83)88361-X

[45]   Kuo, M.S., Mort, A.J. and Dell, A. (1986) Identification and Location of L-Glycerate, an Unusual Acyl Substituent in Gellan Gum. Carbohydrate Research, 156, 173-187.
http://dx.doi.org/10.1016/S0008-6215(00)90109-5

[46]   Upstill, C., Atkins, E.D.T. and Attwool, P.T. (1986) Helical Conformation of Gellan Gum. International Journal of Biological Macromolecules, 8, 275-288.
http://dx.doi.org/10.1016/0141-8130(86)90041-3

[47]   Grasdalen, H. and Smidsrod, O. (1987) Gelation of Gellan Gum. Carbohydrate Polymers, 7, 371-393.
http://dx.doi.org/10.1016/0144-8617(87)90004-X

[48]   Chandrasekaran, R., Pulgjaner, L.C., Joyce, K. and Arnott, S. (1988) Cation Interaction in Gellan: An X-Ray Study of the Potassium Salt. Carbohydrate Research, 181, 23-40.
http://dx.doi.org/10.1016/0008-6215(88)84020-5

[49]   Lee, E.J. and Chandrasekaran, R. (1991) X-Ray and Computer Modeling Studies on Gellan-Related Polymers: Molecular Structures of Welan, S-657, and Rhamsan. Carbohydrate Research, 214, 11-24.
http://dx.doi.org/10.1016/S0008-6215(00)90526-3

[50]   Morris, E.R., Gothard, M.G.E., Hember, M.W.N., Manning, C.E. and Robinson, G. (1996) Conformation and Rheological Transition of Welan, Rhamsan and Acylated Gellan. Carbohydrate Polymers, 30, 165-175.
http://dx.doi.org/10.1016/S0144-8617(96)00059-8

[51]   Tako, M. and Kiriaki, M. (1990) Rheological Properties of Welan Gum in Aqueous Media. Agricultural and Biological Chemistry, 54, 3079-3084.

[52]   Tako, M. (1993) Molecular Origin for Thermal Stability of Rhamsan Gum in Aquesou Media. Bioscience, Biotechnology, and Biochemistry, 57, 1182-1184.
http://dx.doi.org/10.1271/bbb.57.1182

[53]   Tako, M. (1993) Molecular Origin for Thermal Stability of Welan and Rhamsan Gum. In: Yalpani, M., Ed., Carbohydrates and Carbohydrate Polymers, ATL Press, Mount Prospect, 206-215.

[54]   Tako, M. (1994) Molecular Origin for the Thermal Stability of S-657 Polysaccharide Produced by Xanthomonas ATCC 53159. Polymer Gels and Network, 2, 91-104.
http://dx.doi.org/10.1016/0966-7822(94)90029-9

[55]   Jansson, P.E., Lindberg, B., Widmalm, G. and Sandford, P.A (1985) Structural Studies of a Polysaccharide (S-130) Elaborated by Alcaligenes ATCC 31555. Carbohydrate Research, 139, 217-223.
http://dx.doi.org/10.1016/0008-6215(85)90022-9

[56]   Jansson, P.E., Lindberg, B., Lindberg, J., Maekawa, E. and Sandford, P.A. (1986) Structural Studies of a Polysaccharide (S-194) Elaborated by Alcaligenes ATCC 31961. Carbohydrate Research, 156, 157-163.
http://dx.doi.org/10.1016/S0008-6215(00)90107-1

[57]   Chowdhury, T.A., Lindberg, B., Lindquist, U. and Baird, J. (1987) Structure Studies of an Extracellular Polysaccharide, S-657, Elaborated by Xanthomonas ATCC 53159. Carbohydrate Research, 164, 117-122.
http://dx.doi.org/10.1016/0008-6215(87)80124-6

[58]   Tako, M. and Tamaki, H. (2005) Molecular Origin for the Thermal Stability of S-88 Gum Produced by Pseudomonas ATCC 31554. Polymer Journal, 37, 498-505.
http://dx.doi.org/10.1295/polymj.37.498

[59]   Jansson, P.E., Kumar, N.S. and Lindberg, B. (1986) Structural Studies of a Polysaccharide (S-88) Elaborated by Pseudomonas ATCC 31554. Carbohydrate Research, 156, 165-172.
http://dx.doi.org/10.1016/S0008-6215(00)90108-3

[60]   Chowdhury, T.A., Lindberg, B., Lindquist, U. and Baird, J. (1987) Structural Studies of an Extracellular Polysaccharide (S-198) Elaborated by Alcaligenes ATCC 31853. Carbohydrate Research, 161, 127-132.
http://dx.doi.org/10.1016/0008-6215(87)84011-9

[61]   Harris, J. (1977) Rheology and Non-Newtonian Flow. Longman, New York, 28-33.

[62]   Markovitz, H. (1952) A Property of Bressel Functions and Its Application to the Theory of Two Rheometers. Journal of Applied Physics, 23, 1070-1077.
http://dx.doi.org/10.1063/1.1701988

 
 
Top