Back
 AID  Vol.6 No.2 , June 2016
Bridging the Knowledge Gap in Transmission-Blocking Immunity to Malaria: Deciphering Molecular Mechanisms in Mosquitoes
Abstract: The worldwide decline over the last decade in the number of clinical cases of malaria does not mean an end to the universal problem of malaria pathogenesis in those afflicted by infection. Resistance to drugs, higher risk of disease relapse and failure to maintain effective memory of the pathogen in the absence of persistent exposure result in the repeated failure of anti-malarialtreatments. The artificial blocking of transmission of the Plasmodium parasite between hosts from human to Anopheles mosquito, and vice versa, is crucial to restricting the spread of disease. However, a limited knowledge of the molecular mechanisms in operation for transmission of malaria has impeded progress towards a transmission-blocking vaccine. This review highlights the role of anti-malarial immune responses to antigen-specific targets for designing effective vaccines against the sexual stages of Plasmodium that occur within the invertebrate vector. In particular, artificial induction of gametocyte and ookinete apoptosis as a novel means to prevent gamete fertilization and oocyte development, respectively, is highlighted. This and other recent insights into our understanding of the molecular regulation of transmission-blocking immunity are discussed and future prospects considered.
Cite this paper: Satapathy, S. and Taylor-Robinson, A. (2016) Bridging the Knowledge Gap in Transmission-Blocking Immunity to Malaria: Deciphering Molecular Mechanisms in Mosquitoes. Advances in Infectious Diseases, 6, 33-41. doi: 10.4236/aid.2016.62005.
References

[1]   US Census Bureau (2016) International Programs—World Population Clock.
https://www.census.gov/population/international/

[2]   World Health Organization (2015) World Malaria Report 2015. WHO, Geneva.
http://www.who.int/malaria/publications/world-malaria-report-2015/en/

[3]   Centers for Disease Control and Prevention (2016) Impact of Malaria.
http://www.cdc.gov/malaria/malaria_worldwide/impact.html

[4]   Johns Hopkins Malaria Research Institute (2016) About Malaria.
http://malaria.jhsph.edu/about-malaria/

[5]   Hay, S.I., Guerra, C., Tatem, A., Noor, A. and Snow, R. (2004) The Global Distribution and Population at Risk of Malaria: Past, Present, and Future. Lancet Infectious Diseases, 4, 327-336.
http://dx.doi.org/10.1016/S1473-3099(04)01043-6

[6]   Gallup, J.L. and Sachs, J.D. (2001) The Economic Burden of Malaria. American Journal of Tropical Medicine and Hygiene, 64, 85-96.

[7]   Taylor-Robinson, A.W. (2014) Advancement towards an Approved Vaccine to Target Plasmodium falciparum Malaria. International Journal of Immunology, 2, 31-39.
http://dx.doi.org/10.11648/j.iji.20140205.11

[8]   Sherman, I.W. (1998) Malaria—Parasite Biology, Pathogenesis and Protection. ASM Press, Washington DC.

[9]   Barik, T.K. (2015) Antimalarial Drug: From Its Development to Deface. Current Drug Discovery Technologies, 12, 225-228.
http://dx.doi.org/10.2174/1570163812666150907100019

[10]   Bradbury, R.S., Robertson, G., Norton, R.E. and Taylor-Robinson, A.W. (2014) Missing Malaria? Potential Obstacles to Diagnosis and Hypnozoite Eradication. Medical Journal of Australia, 201, 630-631.
http://dx.doi.org/10.5694/mja14.00313

[11]   Taylor-Robinson, A.W. (200) Species-Transcending Regulation of Malaria Parasitaemia. Parasitology Today, 16, 460- 461.
http://dx.doi.org/10.1016/S0169-4758(00)01780-4

[12]   de Roode, J.C., Pansini, R., Cheesman, S.J., Helinski, M.E., Huijben, S., Wargo, A.R., Bell, A.S., Chan, B.H., Walliker, D. and Read, A.F.(2005) Virulence and Competitive Ability in Genetically Diverse Malaria Infections. Proceedings of the National Academy of Sciences of the USA, 102, 7624-7628.
http://dx.doi.org/10.1073/pnas.0500078102

[13]   Josling, G.A. and Llinás, M. (2015) Sexual Development in Plasmodium Parasites: Knowing When It’s Time to Commit. Nature Reviews Microbiology, 13, 573-587.
http://dx.doi.org/10.1038/nrmicro3519

[14]   Gueirard, P., Tavares, J., Thiberge, S., Bernex, F., Ishino, T., Milon, G., Franke-Fayard, B., Janse, C.J., Ménard, R. and Amino, R. (2010) Development of the Malaria Parasite in the Skin of the Mammalian Host. Proceedings of the National Academy of Sciences of the USA, 107, 18640-18645.
http://dx.doi.org/10.1073/pnas.1009346107

[15]   Epstein, J.E., Rao, S., Williams, F., Freilich, D., Luke, T., Sedegah, M., de la Vega, P., Sacci, J., Richie, T.L. and Hoffman, S.L. (2007) Safety and Clinical Outcome of Experimental Challenge of Human Volunteers with Plasmodium falciparum-Infected Mosquitoes: An Update. Journal of Infectious Diseases, 196, 145-154.
http://dx.doi.org/10.1086/518510

[16]   Amino, R., Thiberge, S., Martin, B., Celli, S., Shorte, S., Frischknecht, F. and Ménard, R. (2006) Quantitative Imaging of Plasmodium Transmission from Mosquito to Mammal. Nature Medicine, 12, 220-224.
http://dx.doi.org/10.1038/nm1350

[17]   Tavares, J., Formaglio, P., Thiberge, S., Mordelet, E., Van Rooijen, N., Medvinsky, A., Ménard, R. and Amino, R. (2013) Role of Host Cell Traversal by the Malaria Sporozoite during Liver Infection. The Journal of Experimental Medicine, 210, 905-915.
http://dx.doi.org/10.1084/jem.20121130

[18]   Taylor-Robinson, A.W. (2002) Exoerythrocytic Malaria Vaccine Development: Understanding Host-Parasite Immunobiology Underscores Strategic Success. Expert Review of Vaccines, 1, 317-340.
http://dx.doi.org/10.1586/14760584.1.3.317

[19]   Taylor-Robinson, A.W. (2010) Regulation of Immunity to Plasmodium: Implications from Mouse Models for Blood Stage Malaria Vaccine Design. Experimental Parasitology, 126, 406-414.
http://dx.doi.org/10.1016/j.exppara.2010.01.028

[20]   Peymanfar, Y. and Taylor-Robinson, A.W. (2016) Plasmodium Sexual Stage Parasites Present Distinct Targets for Malaria Transmission-Blocking Vaccine Design. International Journal of Vaccines and Immunization, 2, 51-56.

[21]   Carter, R. and Graves, P.M. (1988) Gametocytes. In: Wernsdorfer, W. and McGregor, I., Eds., Malaria: Principles and Practice of Malariology, Churchill Livingstone, London, 253-306.

[22]   Carter, R. and Chen, D.H. (1976) Malaria Transmission Blocked by Immunization with Gametes of the Malaria Parasite. Nature, 263, 57-60.
http://dx.doi.org/10.1038/263057a0

[23]   Carter, R., Gwadz, R.W. and Green, I. (1979) Plasmodium gallinaceum: Transmission-Blocking Immunity in Chickens. I. The Effect of Anti-Gamete Antibodies in Vitro and in Vivo and Their Elaboration during Infection. Experimental Parasitology, 49, 196-208.

[24]   Carter, R., Gwadz, R.W. and Green, I. (1981) Naturally Acquired Immunity and Antimalarial Antibodies in Relation to Infectivity to Mosquitoes in Endemic Plasmodium falciparum Malaria. Transactions of the 3rd Meeting of the Scientific Working Group on the Immunology of Malaria, Panama, June 1979, 105-121.

[25]   Carlton, J.M., Angiuoli, S.V., Suh, B.B., Kooij, T.W., Pertea, M., Silva, J.C., et al. (2002) Genome Sequence and Comparative Analysis of the Model Rodent Malaria Parasite Plasmodium yoelii yoelii. Nature, 419, 512-519.
http://dx.doi.org/10.1038/nature01099

[26]   Pradel, G. (2007) Proteins of the Malaria Parasite Sexual Stages: Expression, Function and Potential for Transmission Blocking Strategies. Parasitology, 134, 1911-1929.
http://dx.doi.org/10.1017/S0031182007003381

[27]   Bhattacharyya, M.K. and Kumar, N. (2001) Effect of Xanthurenic Acid on Infectivity of Plasmodium falciparum to Anopheles stephensi. International Journal of Parasitology, 31, 1129-1133.
http://dx.doi.org/10.1016/S0020-7519(01)00222-3

[28]   Lakshmanan, V., Fishbaugher, M.E., Morrison, B., Baldwin, M., Macarulay, M., Vaughan, A.M., Mikolajczak, S.A. and Kappe, S.H. (2015) Cyclic GMP Balance Is Critical for Malaria Parasite Transmission from the Mosquito to the Mammalian Host. mBio, 6, e02330-14.
http://dx.doi.org/10.1128/mbio.02330-14

[29]   Baker, D.A. and Kelly, J.M. (2004) Purine Nucleotide Cyclases in the Malaria Parasite. Trends in Parasitology, 20, 227-232.
http://dx.doi.org/10.1016/j.pt.2004.02.007

[30]   Gon?alves, D. and Hunziker, P. (2016) Transmission-Blocking Strategies: The Roadmap from Laboratory Bench to the Community. Malaria Journal, 15, 95.
http://dx.doi.org/10.1186/s12936-016-1163-3

[31]   Rener, J., Graves, P.M., Carter, R., Williams, J. and Burkot, T.R. (1983) Target Antigens of Transmission Blocking Immunity on Gametes of Plasmodium falciparum. The Journal of Experimental Medicine, 158, 976-981.
http://dx.doi.org/10.1084/jem.158.3.976

[32]   Vermeulen, A.N., Ponnudurai, T., Beckers, P.J.A., Verhave J.P., Smits, M.A. and Meuwissen, J.H.E.T. (1985) Sequential Expression of Antigens on Sexual Stages of Plasmodium falciparum Accessible to Transmission-Blocking Antibodies in the Mosquito. Journal of Experimental Medicine, 162, 1460-1476.
http://dx.doi.org/10.1084/jem.162.5.1460

[33]   Nikolaeva, D., Draper, S.J. and Biswas, S. (2015) Toward the Development of Effective Transmission-Blocking Vaccines for Malaria. Expert Review of Vaccines, 14, 653-680.
http://dx.doi.org/10.1586/14760584.2015.993383

[34]   Wu, Y., Sinden, R.E., Churcher, T.S., Tsuboi, T. and Yusibov, V. (2015) Development of Malaria Transmission-Blocking Vaccines: From Concept to Product. Advances in Parasitology, 89, 109-152.
http://dx.doi.org/10.1016/bs.apar.2015.04.001

[35]   Hurd, H., Carter, V. and Nacer, A. (2005) Interactions between Malaria and Mosquitoes: The Role of Apoptosis in Parasite Establishment and Vector Response to Infection. Current Topics in Microbiology and Immunology, 289, 185- 217.
http://dx.doi.org/10.1007/3-540-27320-4_9

[36]   Kerr, J.F., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wide Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
http://dx.doi.org/10.1038/bjc.1972.33

[37]   Gordeeva, A.V., Labas, Y.A. and Zvyagilskaya, R.A. (2004) Apoptosis in Unicellular Organisms: Mechanisms and Evolution. Biochemistry (Moscow), 69, 1055-1066.
http://dx.doi.org/10.1023/b:biry.0000046879.54211.ab

[38]   Paul, R.E., Brey, P.T. and Robert, V. (2002) Plasmodium Sex Determination and Transmission to Mosquitoes. Trends in Parasitology, 18, 32-38.
http://dx.doi.org/10.1016/S1471-4922(01)02122-5

[39]   Al-Olayan, E.B., Williams, G.T. and Hurd, H. (2002) Apoptosis in the Malaria Protozoan Plasmodium berghei: A Possible Mechanism for Limiting Intensity of Infection in the Mosquito. International Journal of Parasitology, 32, 1133-1143.
http://dx.doi.org/10.1016/S0020-7519(02)00087-5

[40]   Talman, A.M., Domarle, O., McKenzie, F.E., Ariey, F. and Robert, V. (2004) Gametocytogenesis: The Puberty of Plasmodium falciparum. Malaria Journal, 3, 24.
http://dx.doi.org/10.1186/1475-2875-3-24

[41]   Silvestrini, F., Alano, P. and Williams, J.L. (2000) Commitment to the Production of Male and Female Gametocytes in the Human Malaria Parasite Plasmodium falciparum. Parasitology, 121, 465-471.
http://dx.doi.org/10.1017/S0031182099006691

[42]   Carter, L.M., Schneider, P. and Reece, S.E. (2014) Information Use and Plasticity in the Reproductive Decisions of Malaria Parasites. Malaria Journal, 13, 115.
http://dx.doi.org/10.1186/1475-2875-13-115

[43]   Morlais, I., Nsango, S.E., Toussile, W., Abate, L., Annan, Z., Tchioffo, M.T., Cohuet, A., Awono-Ambene, P.H., Fontenille, D., Rousset, F. and Berry, A. (2015) Plasmodium falciparum Mating Patterns and Mosquito Infectivity of Natural Isolates of Gametocytes. PLoS ONE, 10, e0123777.
http://dx.doi.org/10.1371/journal.pone.0123777

[44]   Reece, S.E., Drew, D.R. and Gardner, A. (2008) Sex Ratio Adjustment and Kin Discrimination in Malaria Parasites. Nature, 453, 609-614.
http://dx.doi.org/10.1038/nature06954

[45]   Pollitt, L.C., Mideo, N., Drew, D.R., Schneider, P., Colegrave, N. and Reece, S.E. (2011) Competition and the Evolution of Reproductive Restraint in Malaria Parasites. The American Naturalist, 177, 358-367.
http://dx.doi.org/10.1086/658175

[46]   Hurd, H., Grant, K.M. and Arambage, S.C. (2006) Apoptosis-Like Death as a Feature of Malaria Infection in Mosquitoes. Parasitology, 132, S33-S47.
http://dx.doi.org/10.1017/S0031182006000849

[47]   Arambage, S.C., Grant, K.M., Pardo, I., Ranford-Cartwright, L. and Hurd, H. (2009) Malaria Ookinetes Exhibit Multiple Markers for Apoptosis-Like Programmed Cell Death in Vitro. Parasites & Vectors, 2, 32.
http://dx.doi.org/10.1186/1756-3305-2-32

[48]   Ramiro, R.S., Alpedrinha, J., Carter, L., Gardner, A. and Reece, S.E. (2011) Sex and Death: The Effects of Innate Immune Factors on the Sexual Reproduction of Malaria Parasites. PLoS Pathogens, 7, e1001309.
http://dx.doi.org/10.1371/journal.ppat.1001309

[49]   Ahmed, A.M. and Hurd, H. (2006) Immune Stimulation and Malaria Infection Impose Reproductive Costs in Anopheles gambiae via Follicular Apoptosis. Microbes and Infection, 8, 308-315.
http://dx.doi.org/10.1016/j.micinf.2005.06.026

[50]   Dantzler, K.W., Ravel, D.B., Brancucci, N.M. and Marti, M. (2015) Ensuring Transmission through Dynamic Host Environments: Host-Pathogen Interactions in Plasmodium Sexual Development. Current Opinion in Microbiology, 26, 17-23.
http://dx.doi.org/10.1016/j.mib.2015.03.005

 
 
Top