The Cosmological Evolution of Baryonic Matter’S Density Perturbations Under Influence of the Quintessence

Author(s)
Chechin Leonid Mikhajlovich

ABSTRACT

For deeper understanding the process of baryonic matter evolution in the expanding Universe it is necessary to know the physical property of concrete field that represents the background of substrate type of dark energy. Beside, it is necessary to explore in details the influence of such field on the continuous medium of baryonic matter. These statements were realized for the quintessence field that describes by two gravitating scalar fields. They give own contributions at the total pressure and at the total mass density of baryonic matter. It allowed show that evolution of baryonic matter’s density perturbations obeys the equation of forced oscillations and admits the resonance case, when amplitude of baryonic matter’s density perturbations gets the strong short-time splash. This splash interprets as a new macroscopic mechanism of the initial matter density perturbations appearance.

For deeper understanding the process of baryonic matter evolution in the expanding Universe it is necessary to know the physical property of concrete field that represents the background of substrate type of dark energy. Beside, it is necessary to explore in details the influence of such field on the continuous medium of baryonic matter. These statements were realized for the quintessence field that describes by two gravitating scalar fields. They give own contributions at the total pressure and at the total mass density of baryonic matter. It allowed show that evolution of baryonic matter’s density perturbations obeys the equation of forced oscillations and admits the resonance case, when amplitude of baryonic matter’s density perturbations gets the strong short-time splash. This splash interprets as a new macroscopic mechanism of the initial matter density perturbations appearance.

KEYWORDS

Baryonic Matter’S Density Perturbations, Quintessence Field, Nonstationary Equation Of State Of The Universe

Baryonic Matter’S Density Perturbations, Quintessence Field, Nonstationary Equation Of State Of The Universe

Cite this paper

nullC. Mikhajlovich, "The Cosmological Evolution of Baryonic Matter’S Density Perturbations Under Influence of the Quintessence,"*Journal of Modern Physics*, Vol. 2 No. 8, 2011, pp. 834-840. doi: 10.4236/jmp.2011.28098.

nullC. Mikhajlovich, "The Cosmological Evolution of Baryonic Matter’S Density Perturbations Under Influence of the Quintessence,"

References

[1] V. L. Ginzburg, “On Some Advances in Physics and Astron-omy over the Past Three Years,” Physics–Uspekhi (Advances in Physics Sciences), Vol. 45, No. 2, 2002, pp. 205-211.

[2] A. Sandage, “The Universe at Large,” In: G. Munch, A. Mampaso and F. Sanchez, Eds., Cambridge University Press, Cambridge, 1997.

[3] Ya. B. Zel’dovich and I. D. Novikov, “Relativistic Astrophysics,” Vol. 2, Chicago Press, Chicago, 1983.

[4] T. Padmanabhan, “Structure Formation in the Universe,” Cam-bridge University Press, Cambridge, 1993.

[5] G. Dvali, A. Gruzinov and M. Zaldarriaga, “Cosmological Perturbations from Reheating, Freezeout, and Mass Domination,” Physical Review D, Vol. 69, 2003, 023505, [arXiv:astro-ph/00306052].

[6] D. Polarsky and R. Gannouji, “On the Growth of Linear Perturbations,” Physics Letters, Vol. B660, 2008, p. 439; arXiv: 0710.1510v2 [astro-ph] 11 October 2007, pp. 1-8.

[7] F. Verheest, P. K. Shukla, G. Jacobs and V. V. Yaroshenko, “Jeans Instability in Partially Ionized Self- Gravitating Dusty Plasmas”, Physical Review E, Vol. 68, 2003, pp. 1-4.

[8] M. C. Johnson and M. Kamionkowski, “Dynamical and Gravita-tional Instability of Oscillating-Field Dark Energy and Dark Matter,” Physical Review D, Vol. 78, 2008, pp. 1-9.

[9] T. A. Thompson, “Gravitational Instability in Radiation Pres-sure-Dominated Backgrounds,” Astrophysical Journal, Vol. 684, No. 1, 2008, pp. 212- 225.

[10] P. K. S. Dunsby, “Gauge-Invariant Perturbations in Multi-Component Fluid Cosmologies,” Classical and Quantum Gravity, Vol. 8, 1991, pp. 1785-1806. doi:10.1088/0264-9381/8/10/006

[11] L. T. Chyornyj, “The Relativistic Models of Continuous Media,” Nauka, Moscow, 1983, (in Russian);

[12] S. A. Serov and S. S. Serova, “Multi-Component Gas-Dynamics and Turbulence,” 2005, E-print, arXiv: physics/0503215.

[13] N. Bartolo, P.-S. Corasaniti, A. Liddle and M. Malquarti, “Perturbations in Cosmologies with a Scalar Field and a Perfect Fluid,” Physical Review D, Vol. 70, 2004, 043532, arXiv: astro-ph/0311503v3, 22 April, 2004, pp. 1-9.

[14] A. De la Macorra, “Interacting Dark Energy: Generic Cosmological Evolution for Two Scalar Fields,” Journal of Cosmology and Astroparticle Physics, Vol. 1, 2008, p. 30. doi:10.1088/1475-7516/2008/01/030

[15] S. Unnikrishnan, H. K. Jassal and T. R. Seshadri, “Scalar Field Dark Energy Perturbations and Their Scale Dependence,” Vol. 78, No. 12, 2008, pp. 1-12. arXiv: astro-ph 0801.2017v3,

[16] T. Koivisto, “Growth of Perturbations in Dark Matter Coupled with Quintessence,” 2005, pp. 1-14, arXiv: astro-ph/0504571v2.

[17] V. Sahni and W. Limin, “A New Cos- mological Model of Quintessence and Dark Matter,” Physical Review, Vol. D62, 1999, pp. 1-4, arXiv:astro-ph/9910097v3.

[18] P. J. E. Peebles and A. Vilenkin, “Noninteracting Dark Matter,” 1998, pp. 1-9. arXiv:astro-ph/981059v1

[19] J. S. Alcaniz and J. A. S. Lima, “Dark Energy and the Epoch of Galaxy Formation,” The As-trophysical Journal, Vol. 550, No. 1, 2001, pp. L133-L136. doi:10.1086/319642

[20] M. C. Bento, O. Bertolami and N. C. Santos, “A Two- Field Quintessence Model,” Physical Review D, Vol. 65, No. 6, 2002, pp. 1-4. arXiv:astro-ph/0106405v2

[21] X.-F. Zhang, H. Li, Y.-S. Piao and X. M. Zhang, “Two- Field Models of Dark Energy with Equation of State Across-1,” Modern Physics Letters A, Vol. 21, 2005, pp. 1-5. arXiv:astro-ph/050152v1

[22] D. I. Po-dol’sky, “On the Equation of State for the Λ Field,” Astronomy Letters, Vol. 28, No. 7, 2002, pp. 434- 437.

[23] E. J. Cope-land, M. Sami and Sh. Tsujikawa, “Dynamics of Dark Energy,” International Journal of Modern Physics D, Vol. 15, No. 11, pp. 1-94. arXiv: hep-th/0603057v3

[24] A. D. Chernin, “Cosmic Vac-uum,” Physics-Uspekhi, (Ad- vances in Physical Sciences), Vol. 44, No. 11, 2001, pp. 1099-1118.

[25] A. D. Linde, “Particle Physics and Inflationary Cosmology,” Harwood Academic Publishers, Chur, 1990.

[26] N. J. Nunes and D. F. Mota, “Structure Formation in In- homogeneous Dark Energy Mod-els,” Monthly Notices of the Royal Astronomical Society, Vol. 368, 2006, pp. 751- 758. arXiv:astro-ph/0409481v2

[27] E. Kamke, “Differentialgleichungen: L?sungsmethoden und L?sungen,” Leipzig, 1959.

[28] G. A. Watson, “Treatise on the Theory of Bessel Functions,” 2nd Edition, CUP, 1944.

[29] P. J. E. Peebles, “Physical Cosmology,” Princeton University, Princeton, 1971.

[30] S. Weinberg, “Gravitation and Cos-mology,” John Wiley & Sons, Inc., New York, London, Syd-ney and Toronto, 1972.

[31] H. Brenner, “A Critical Test of Bivelocity Hydrodynamics for Mixtures,” Journal of Chemical Physics, Vol. 133, No. 15, 2010, pp. 154102-154102-8. doi:10.1063/1.3494028

[32] L. D. Landau and E. M. Lifshitz, “Mechanics,” Nauka, Moscow, 1958, (in Russian).

[33] A. D. Chernin, D. I. Nagirner and S. V. Starikova, “Growth Rate of Cosmological Perturbations in Standard Model: Explicit Ana-lytical Solution,” Astronomy and Astrophysics, Vol. 399, No. 1, 2003, pp. 19-21.

[34] D. Munshi, C. Porciani and Yun Wang, “Galaxy Clustering and Dark Energy,” Monthly Notices of the Royal Astronomical Society, Vol. 349, No. 1, 2004, pp. 281-290.

[35] V. Linder and A. Jenkins, “The Cosmological Simulation Code GADGET-2,” Monthly Notices of the Royal Astronomical Society, Vol. 346, No. 2, 2003, pp. 573-583.

[36] W. J. Persival, “Cosmological Structure Forma-tion in a Homogeneous Dark Energy Background,” Astronomy and Astrophysics, Vol. 443, No. 3, 2005, pp. 819-830.

[37] L. Wang and P. Steinhardt, “Cluster Abundance Constraints on Quintessence Models,” Astrophysical Journal, Vol. 508, 1998, pp. 483-490.

[38] N. J. Nunes, A. S. da Silva and N. Aghanim, “Number Counts in Homogeneous and Inhomogeneous Dark Energy Models,” Astronomy and Astrophysics, Vol. 450, No. 3, 2006, pp. 899-907. doi:10.1051/0004-6361:20053706

[39] S. Basilakos, “Cosmological Implications and Structure Forma-tion from a Time Varying Vacuum,” Vol. 395, 2009, pp. 1-10. arXiv:0903.0452v1 [astro-ph. CO]

[40] L. M. Chechin, “An-tigravitational Instability of Cosmic Substrate in Newtonian Cosmology,” Chinese Physics Letters, Vol. 23, No. 8, 2006, pp. 2344-2347. doi:10.1088/0256-307X/23/8/104

[1] V. L. Ginzburg, “On Some Advances in Physics and Astron-omy over the Past Three Years,” Physics–Uspekhi (Advances in Physics Sciences), Vol. 45, No. 2, 2002, pp. 205-211.

[2] A. Sandage, “The Universe at Large,” In: G. Munch, A. Mampaso and F. Sanchez, Eds., Cambridge University Press, Cambridge, 1997.

[3] Ya. B. Zel’dovich and I. D. Novikov, “Relativistic Astrophysics,” Vol. 2, Chicago Press, Chicago, 1983.

[4] T. Padmanabhan, “Structure Formation in the Universe,” Cam-bridge University Press, Cambridge, 1993.

[5] G. Dvali, A. Gruzinov and M. Zaldarriaga, “Cosmological Perturbations from Reheating, Freezeout, and Mass Domination,” Physical Review D, Vol. 69, 2003, 023505, [arXiv:astro-ph/00306052].

[6] D. Polarsky and R. Gannouji, “On the Growth of Linear Perturbations,” Physics Letters, Vol. B660, 2008, p. 439; arXiv: 0710.1510v2 [astro-ph] 11 October 2007, pp. 1-8.

[7] F. Verheest, P. K. Shukla, G. Jacobs and V. V. Yaroshenko, “Jeans Instability in Partially Ionized Self- Gravitating Dusty Plasmas”, Physical Review E, Vol. 68, 2003, pp. 1-4.

[8] M. C. Johnson and M. Kamionkowski, “Dynamical and Gravita-tional Instability of Oscillating-Field Dark Energy and Dark Matter,” Physical Review D, Vol. 78, 2008, pp. 1-9.

[9] T. A. Thompson, “Gravitational Instability in Radiation Pres-sure-Dominated Backgrounds,” Astrophysical Journal, Vol. 684, No. 1, 2008, pp. 212- 225.

[10] P. K. S. Dunsby, “Gauge-Invariant Perturbations in Multi-Component Fluid Cosmologies,” Classical and Quantum Gravity, Vol. 8, 1991, pp. 1785-1806. doi:10.1088/0264-9381/8/10/006

[11] L. T. Chyornyj, “The Relativistic Models of Continuous Media,” Nauka, Moscow, 1983, (in Russian);

[12] S. A. Serov and S. S. Serova, “Multi-Component Gas-Dynamics and Turbulence,” 2005, E-print, arXiv: physics/0503215.

[13] N. Bartolo, P.-S. Corasaniti, A. Liddle and M. Malquarti, “Perturbations in Cosmologies with a Scalar Field and a Perfect Fluid,” Physical Review D, Vol. 70, 2004, 043532, arXiv: astro-ph/0311503v3, 22 April, 2004, pp. 1-9.

[14] A. De la Macorra, “Interacting Dark Energy: Generic Cosmological Evolution for Two Scalar Fields,” Journal of Cosmology and Astroparticle Physics, Vol. 1, 2008, p. 30. doi:10.1088/1475-7516/2008/01/030

[15] S. Unnikrishnan, H. K. Jassal and T. R. Seshadri, “Scalar Field Dark Energy Perturbations and Their Scale Dependence,” Vol. 78, No. 12, 2008, pp. 1-12. arXiv: astro-ph 0801.2017v3,

[16] T. Koivisto, “Growth of Perturbations in Dark Matter Coupled with Quintessence,” 2005, pp. 1-14, arXiv: astro-ph/0504571v2.

[17] V. Sahni and W. Limin, “A New Cos- mological Model of Quintessence and Dark Matter,” Physical Review, Vol. D62, 1999, pp. 1-4, arXiv:astro-ph/9910097v3.

[18] P. J. E. Peebles and A. Vilenkin, “Noninteracting Dark Matter,” 1998, pp. 1-9. arXiv:astro-ph/981059v1

[19] J. S. Alcaniz and J. A. S. Lima, “Dark Energy and the Epoch of Galaxy Formation,” The As-trophysical Journal, Vol. 550, No. 1, 2001, pp. L133-L136. doi:10.1086/319642

[20] M. C. Bento, O. Bertolami and N. C. Santos, “A Two- Field Quintessence Model,” Physical Review D, Vol. 65, No. 6, 2002, pp. 1-4. arXiv:astro-ph/0106405v2

[21] X.-F. Zhang, H. Li, Y.-S. Piao and X. M. Zhang, “Two- Field Models of Dark Energy with Equation of State Across-1,” Modern Physics Letters A, Vol. 21, 2005, pp. 1-5. arXiv:astro-ph/050152v1

[22] D. I. Po-dol’sky, “On the Equation of State for the Λ Field,” Astronomy Letters, Vol. 28, No. 7, 2002, pp. 434- 437.

[23] E. J. Cope-land, M. Sami and Sh. Tsujikawa, “Dynamics of Dark Energy,” International Journal of Modern Physics D, Vol. 15, No. 11, pp. 1-94. arXiv: hep-th/0603057v3

[24] A. D. Chernin, “Cosmic Vac-uum,” Physics-Uspekhi, (Ad- vances in Physical Sciences), Vol. 44, No. 11, 2001, pp. 1099-1118.

[25] A. D. Linde, “Particle Physics and Inflationary Cosmology,” Harwood Academic Publishers, Chur, 1990.

[26] N. J. Nunes and D. F. Mota, “Structure Formation in In- homogeneous Dark Energy Mod-els,” Monthly Notices of the Royal Astronomical Society, Vol. 368, 2006, pp. 751- 758. arXiv:astro-ph/0409481v2

[27] E. Kamke, “Differentialgleichungen: L?sungsmethoden und L?sungen,” Leipzig, 1959.

[28] G. A. Watson, “Treatise on the Theory of Bessel Functions,” 2nd Edition, CUP, 1944.

[29] P. J. E. Peebles, “Physical Cosmology,” Princeton University, Princeton, 1971.

[30] S. Weinberg, “Gravitation and Cos-mology,” John Wiley & Sons, Inc., New York, London, Syd-ney and Toronto, 1972.

[31] H. Brenner, “A Critical Test of Bivelocity Hydrodynamics for Mixtures,” Journal of Chemical Physics, Vol. 133, No. 15, 2010, pp. 154102-154102-8. doi:10.1063/1.3494028

[32] L. D. Landau and E. M. Lifshitz, “Mechanics,” Nauka, Moscow, 1958, (in Russian).

[33] A. D. Chernin, D. I. Nagirner and S. V. Starikova, “Growth Rate of Cosmological Perturbations in Standard Model: Explicit Ana-lytical Solution,” Astronomy and Astrophysics, Vol. 399, No. 1, 2003, pp. 19-21.

[34] D. Munshi, C. Porciani and Yun Wang, “Galaxy Clustering and Dark Energy,” Monthly Notices of the Royal Astronomical Society, Vol. 349, No. 1, 2004, pp. 281-290.

[35] V. Linder and A. Jenkins, “The Cosmological Simulation Code GADGET-2,” Monthly Notices of the Royal Astronomical Society, Vol. 346, No. 2, 2003, pp. 573-583.

[36] W. J. Persival, “Cosmological Structure Forma-tion in a Homogeneous Dark Energy Background,” Astronomy and Astrophysics, Vol. 443, No. 3, 2005, pp. 819-830.

[37] L. Wang and P. Steinhardt, “Cluster Abundance Constraints on Quintessence Models,” Astrophysical Journal, Vol. 508, 1998, pp. 483-490.

[38] N. J. Nunes, A. S. da Silva and N. Aghanim, “Number Counts in Homogeneous and Inhomogeneous Dark Energy Models,” Astronomy and Astrophysics, Vol. 450, No. 3, 2006, pp. 899-907. doi:10.1051/0004-6361:20053706

[39] S. Basilakos, “Cosmological Implications and Structure Forma-tion from a Time Varying Vacuum,” Vol. 395, 2009, pp. 1-10. arXiv:0903.0452v1 [astro-ph. CO]

[40] L. M. Chechin, “An-tigravitational Instability of Cosmic Substrate in Newtonian Cosmology,” Chinese Physics Letters, Vol. 23, No. 8, 2006, pp. 2344-2347. doi:10.1088/0256-307X/23/8/104