Back
 JAMP  Vol.4 No.5 , May 2016
Fixed Points Associated to Power of Normal Completely Positive Maps*
Abstract: Let be a normal completely positive map with Kraus operators . An operator X is said to be a fixed point of , if . Let be the fixed points set of . In this paper, fixed points of are considered for , where means j-power of . We obtain that and for integral when A is self-adjoint and commutable. Moreover, holds under certain condition.
Cite this paper: Zhang, H. and Si, H. (2016) Fixed Points Associated to Power of Normal Completely Positive Maps*. Journal of Applied Mathematics and Physics, 4, 925-929. doi: 10.4236/jamp.2016.45101.
References

[1]   Arias, A., Gheondea, A. and Gudder, S. (2002) Fixed Points of Quantum Operations. Journal of Mathematical Physics, 43, 5872-5881.
http://dx.doi.org/10.1063/1.1519669

[2]   Li, Y. (2011) Characterizations of Fixed Points of Quantum Operations. Journal of Mathematical Physics, 52, Article ID: 052103.
http://dx.doi.org/10.1063/1.3583541

[3]   Long, L. and Zhang, S.F. (2011) Fixed Points of Commutative Super-Operators. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 09521.
http://dx.doi.org/10.1088/1751-8113/44/9/095201

[4]   Long, L. (2011) A Class of General Quantum Operations. International Journal of Theoretical Physics, 50, 1319-1324.
http://dx.doi.org/10.1007/s10773-010-0627-4

[5]   Liu, W.H. and Wu, J.D. (2010) Fixed Points of Commutative Lüders Operations. Journal of Physics A: Mathematical and Theoretical, 43, Article ID: 395206.
http://dx.doi.org/10.1088/1751-8113/43/39/395206

[6]   Magajna, B. (2012) Fixed Points of Normal Completely Positive Maps on B(H). Journal of Mathematical Analysis and Applications, 389, 1291-1302.
http://dx.doi.org/10.1016/j.jmaa.2012.01.007

[7]   Nagy, G. (2008) On Spectra of Lüders Operations. Journal of Mathematical Physics, 49, Article ID: 022110.
http://dx.doi.org/10.1063/1.2840472

[8]   Popescu, G. (2003) Similarity and Ergodic Theory of Positive Linear maps. Journal für die reine und angewandte Mathematik, 561, 87-129.
http://dx.doi.org/10.1515/crll.2003.069

[9]   Prunaru, B. (2008) Toeplitz Operators Associated to Commuting Row Contractions. Journal of Functional Analysis, 254, 1626-1641.
http://dx.doi.org/10.1016/j.jfa.2007.11.001

[10]   Prunaru, B. (2011) Fixed Points for Lüders Operations and Commutators. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 185203.
http://dx.doi.org/10.1088/1751-8113/44/18/185203

[11]   Zhang, H.Y. and Ji, G.X. (2012) A Note on Fixed Points of General Quantum Operations. Reports on Mathematical Physics, 70, 111-117.
http://dx.doi.org/10.1016/S0034-4877(13)60016-6

[12]   Zhang, H.Y. and Ji, G.X. (2013) Normality and Fixed Points Associated to Commutative Row Contractions. Journal of Mathematical Analysis and Applications, 400, 247-253.
http://dx.doi.org/10.1016/j.jmaa.2012.10.042

[13]   Choi, M.D. (1975) Completely Positive Linear Maps on Complex Matrices. Linear Algebra and Its Applications, 10, 285-290.
http://dx.doi.org/10.1016/0024-3795(75)90075-0

[14]   Kraus, K. (1971) General State Changes in Quantum Theory. Annals of Physics, 64, 311-355.
http://dx.doi.org/10.1016/0003-4916(71)90108-4

[15]   Zhang, H.Y. and Xue, M.Z. (2016) Fixed Points of Trace Preserving Completely Positive maps. Linear Multilinear A, 64, 404-411.
http://dx.doi.org/10.1080/03081087.2015.1043718

[16]   Hou, J.C. (1985) On Putnam-Fuglede Theorem of Non-normal Operators. Acta Mathematica Sinica, 28, 333-340.

 
 
Top