[1] A. U. Levin, and K. S. Narendra, “Control of Nonlinear Dynamical Systems Using Neural Networks—Part II: Observability, Identification and Control,” IEEE Transactions on Neural Networks, Vol. 7, No. 1, 1996, pp. 30-42. doi:10.1109/72.478390
[2] C. C. Ku and K. Y. Lee, “Diagonal Recurrent Neural Networks for Dynamic System Control,” IEEE Transactions on Neural Networks, Vol. 6, No. 1, 1995, pp. 144-156. doi:10.1109/72.363441
[3] G. L. Plett, “Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks,” IEEE Transactions on Neural Networks, Vol. 14, No.2, 2003, pp. 360-376. doi:10.1109/TNN.2003.809412
[4] K. S. Narendra and K. Parthasarathy, “Identification and Control of Dynamical Systems Using Neural Networks,” IEEE Transactions on Neural Networks, Vol. 1, No. 1, 1990, pp. 4-27. doi:10.1109/72.80202
[5] L. Chen and K. S. Narendra, “Nonlinear Adaptive Control Using Neural Networks and Multiple Models,” Proceedings of the 2000 American Control Conference, Chicago, 2002, pp. 4199-4203.
[6] R. Zhan and J. Wan “Neural Network-Aided Adaptive Unscented Kalman Filter for Nonlinear State Estimation,” IEEE Signal Processing Letters, Vol. 13, No. 7, 2006, pp. 445-448. doi:10.1109/LSP.2006.871854
[7] A. S. Poznyak, W. Yu, E. N. Sanchez and J. P. Perez, “Nonlinear Adaptive Trajectory Tracking Using Dynamic Neural Networks,” IEEE Transactions on Neural Networks, Vol. 10, No. 6, 1999, pp. 1402-1411. doi:10.1109/72.809085
[8] P. A. Mastorocostas, “A Constrained Optimization Algorithm for Training Locally Recurrent Globally Feedforward Neural Networks,” Proceedings of International Joint Conference on Neural Networks, Montreal, 31 July 4 August 2005, pp.717-722.
[9] A. Tarek, “Improved Design of Nonlinear Controllers Using Recurrent Neural Networks,” Master Dissertation, Cairo University, 1997.
[10] Xiang Li, Z. Q. Chen and Z. Z. Yuan, “Simple Recurrent Neural Network-Based Adaptive Predictive Control for Nonilnear Systems,” Asian Journal of Control, Vol. 4, No. 2, June 2002, pp. 231-239.
[11] N. Kumar , V. Panwar, N. Sukavanam, S. P. Sharma and J. H. Borm, “Neural Network-Based Nonlinear Tracking Control of Kinematically Redundant Robot Manipulators,” Mathematical and Computer Modelling, Vol. 53, No. 9-10, 2011, pp. 1889-1901. doi:10.1016/j.mcm.2011.01.014
[12] J. Pedro and O. Dahunsi, “Neural Network Based Feedback Linearization Control of a Servo-Hydraulic Vehicle Suspension System,” International Journal of Applied Mathematics and Computer Science, Vol. 21, No. 1, 2011, pp. 137-147. doi:10.2478/v10006-011-0010-5
[13] A. Thammano and P. Ruxpakawong, “Nonlinear Dynamic System Identification Using Recurrent Neural Network with Multi-Segment Piecewise-Linear Connection Weight,” Memetic Computing, Vol. 2, No. 4, 2010, pp. 273-282. doi:10.1007/s12293-010-0042-7
[14] A. C Tsoi and A. D. Back, “Locally Recurrent Globally Feedforward Networks: A Critical Review of Architectures,” IEEE Transaction Neural Networks, Vol. 5, No. 2, 1994, pp. 229-239. doi:10.1109/72.279187
[15] T. Rashid, B. Q. Huang and T. Kechadi, “Auto-Regressive Recurrent Neural Network Approach for Electricity Load Forecasting,” International Journal of Computational Intelligence, Vol. 3, No. 1, 2007, pp.66-71.
[16] B. A. Pearlmutter, “Gradient Calculations for Dynamic Recurrent Neural Networks: A Survey,” IEEE Transactions on Neural Networks, Vol. 6, No. 5, 1995, pp. 1212-1228. doi:10.1109/72.410363