An Antilock-Braking Systems (ABS) Control: A Technical Review

ABSTRACT

Many different control methods for ABS systems have been developed. These methods differ in their theoretical basis and performance under the changes of road conditions. The present review is a part of research project entitled “Intelligent Antilock Brake System Design for Road-Surfaces of Saudi Arabia” In the present paper we review the methods used in the design of ABS systems. We highlight the main difficulties and summarize the more recent developments in their control techniques. Intelligent control systems like fuzzy control can be used in ABS control to emulate the qualitative aspects of human knowledge with several advantages such as robustness, universal approximation theorem and rule-based algorithms.

Many different control methods for ABS systems have been developed. These methods differ in their theoretical basis and performance under the changes of road conditions. The present review is a part of research project entitled “Intelligent Antilock Brake System Design for Road-Surfaces of Saudi Arabia” In the present paper we review the methods used in the design of ABS systems. We highlight the main difficulties and summarize the more recent developments in their control techniques. Intelligent control systems like fuzzy control can be used in ABS control to emulate the qualitative aspects of human knowledge with several advantages such as robustness, universal approximation theorem and rule-based algorithms.

Cite this paper

nullA. Aly, E. Zeidan, A. Hamed and F. Salem, "An Antilock-Braking Systems (ABS) Control: A Technical Review,"*Intelligent Control and Automation*, Vol. 2 No. 3, 2011, pp. 186-195. doi: 10.4236/ica.2011.23023.

nullA. Aly, E. Zeidan, A. Hamed and F. Salem, "An Antilock-Braking Systems (ABS) Control: A Technical Review,"

References

[1] P. M. Hart, “Review of Heavy Vehicle Braking Systems Requirements (PBS Requirements),” Draft Report, 24 April 2003.

[2] M. Maier and K. Muller “The New and Compact ABS Unit for Passenger Cars,” SAE Paper No.950757, 1996.

[3] P. E. Wellstead and N. B. O. L. Pettit, “Analysis and Redesign of an Antilock Brake System Controller,” IEE Proceedings Control Theory Applications, Vol. 144, No. 5, 1997, pp. 413-426. doi:10.1049/ip-cta:19971441

[4] A. G. Ulsoy and H. Peng, “Vehicle Control Systems,” Lecture Notes, ME 568, 1997.

[5] P. E. Wellstead, “Analysis and Redesign of an Antilock Brake System Controller,” IEEE Proceedings Control Theory Applications, Vol. 144, No. 5, September 1997, pp. 413-426. doi: 10.1049/ip-cta:19971441

[6] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. VT-30, No. 3, 1981, pp. 134- 144. doi:10.1109/T-VT.1981.23895

[7] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock-Up Control System of Mitsubishi Starion,” SAE Paper, Washington, 1983.

[8] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IEEE Proceedings, San Francisco, 1985, pp. 390-395.

[9] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” U.S. Patent No. 4842342, 1989.

[10] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, Vol. 186, No. 68. 1972, pp. 855-880. doi:10.1243/PIME_PROC_1972_186_102_02

[11] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi:10.1109/91.481947

[12] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202.

[13] B. Lojko and P. Fuchs, “The Control of ASR System in a Car Based on the TMS320F243 DSP,” Diploma Thesis, Dept. of Radio & Electronics, Bratislava, 2002.

[14] P. Hart, “ABS Braking Requirements,” Hartwood Consulting Pty Ltd , Victoria, June 2003.

[15] Q. Ming, “Sliding Mode Controller Design for ABS System,” MSc Thesis, Virginia Polytechnic Institute and State University, 1997.

[16] M. Stan, R.-E. Precup and A. S. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[17] S. Drakunov, U. Ozgiiner and P. Dix, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transaction on Control Systems Technology, Vo1. 3 No. 1, March 1995, pp. 79-85.

[18] National Semiconductor Inc., “Adaptive Braking Systems (ABS),” US Patent No. 3825305, 1974.

[19] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi: 10.1109/91.481947

[20] J. Song, H. Kim and K. Boo, “A study on an Anti-Lock Braking System Controller and Rear-Wheel Controller to Enhance Vehicle Lateral Stability,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221 No. 7, 2007, pp. 777-787. doi:10.1243/09544070JAUTO225

[21] F. Jiang, “An Application of Nonlinear PID Control to a Class of Truck ABS Problems,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, 2000, pp. 516-521.

[22] M. Tanellia, A. Astolfi and S. M. Savaresi, “Robust Nonlinear Output Feedback Control for Brake by Wire Control Systems,” Automatica, Vol. 44, No. 4, 2008, pp. 1078-1087. doi:10.1016/j.automatica.2007.08.020

[23] R. Freeman, “Robust Slip Control for a Single Wheel,” University of California, Santa Barbara, 1995.

[24] J. S. Yu, “A Robust Adaptive Wheel-Slip Controller for Antilock Brake System,” Proceedings of 36th IEEE Conferrence on Decision Control, San Diego, 1997, pp. 2545-2546.

[25] J. Yi, L. Alvarez, R. Horowitz and C. C. DeWit, “Adaptive Emergency Braking Control Using a Dynamical Tire/Road Friction Model,” Proceedings of 39th IEEE Conference on Decision Control, Sydney, 2000, pp. 456-461.

[26] J. Lüdemann, “Heterogeneous and Hybrid Control with Application in Automotive Systems,” Ph.D. dissertation, Glasgow University, 2002.

[27] Y. Liu and J. Sun, “Target Slip Tracking Using Gain-Scheduling for Braking Systems,” Proceedings of the 1995 American Control Conference, Seattle, 1995, pp. 1178-1182.

[28] S. Taheri and E. H. Law, “Slip Control Braking of an Automobile during Combined Braking and Steering Manoeuvres,” American Society of Magazine Editors, Vol. 40, No. 1, 1991, pp. 209-227.

[29] C. Jun, “The Study of ABS Control System with Different Control Methods,” Proceedings of the 4th International Symposium on Advanced Vehicle Control, Nagoya, 1998, pp. 623-628.

[30] F. Jiang, “A Novel Approach to a Class of Antilock Brake Problems,” Ph.D. Dissertation, Cleveland State University, Cleveland, 2000.

[31] Y. Wang, T. Schmitt-Hartmann, M. Schinkel and K. J. Hunt, “A New Approach to Simultaneous Stabilization and Strong Simultaneous Stabilization with D Stability and Its Application to ABS Control Systems Design,” European Control Conference, Porto, 2001, pp. 1291-1294.

[32] S. Solyom, “Synthesis of a Model-Based Tire Slip Controller,” Synthesis of a Model-Based Tire Slip Controller, Vol. 41, No. 6, 2004, pp. 475-499.

[33] S. Drakunov, ü. ?zgüner, P. Dix, and B. Ashrafi, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transactions on Control Systems Technology, Vol. 3, 1995, pp. 79-85. doi:10.1109/87.370698

[34] M. Schinkel and K. Hunt, “Anti-lock Braking Control Using a Sliding Mode Like Approach,” Proceedings of the 2002 American Control Conference, Anchorage, 2002, pp. 2386-2391.

[35] M. C. Wu and M. C. Shih, “Hydraulic Anti-Lock Braking Control Using the Hybrid Sliding-Mode Pulse Width Modulation Pressure Control Method,” Proceedings of the Institution of Mechanical Engineers, Vol. 215, 2001, pp. 177-187. doi:10.1109/87.748153

[36] C. ünsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, March 1999, pp. 271-281.

[37] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical report of Department of Electrical Engineering, National Chi Nan University, 2005.

[38] R.-G. Wang, Z.-D. Liu and Z.-Q. Qi, “Multiple Model Adaptive Control of Antilock Brake System via Backstepping Approach,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, 2005, pp. 591-595.

[39] T. A. Johansen, J. Kalkkuhl, J. Lüdemann and I. Petersen, “Hybrid Control Strategies in ABS,” Proceedings of the 2001 American Control Conference, Arlington 2001, pp. 1704-1705.

[40] H. S. Tan and M. Tomizuka, “An Adaptive Sliding Mode Vehicle Traction Controller Design,” Proceedings of the 1989 American Control Conference, Pittsburgh, 1989, pp. 1053-1058.

[41] Y. K. Chin, W. C. Lin and D. Sidlosky, “Sliding-Mode ABS Wheel Slip Control,” Proceedings of 1992 ACC, Chicago, 1992, pp. 1-6.

[42] J. C. Gerdes, A. S. Brown and J. K. Hedrick, “Brake System Modeling for Vehicle Control,” Proceedings International Mechanical Engineering Congress and Exposition, San Francisco, 1995, pp. 4756-4763.

[43] D. Cho and J. K. Hedrick, “Automotive Powertrain Modeling for Control,” Transactions ASME Journal of Dynamic Systems, Measurements and Control, Vol.111, No.4, December 1989, pp. 568-576. doi:10.1115/1.3153093

[44] E. Kayacan and O. Kaynak, “A Grey System Modeling Approach for Sliding Mode Control of Antilock Braking System,” IEEE Transactions On Industrial Electronics, Vol. 56, No. 8, August 2009, pp. 3244-3252. doi:10.1109/TIE.2009.2023098

[45] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical Report of Department of Electrical Engineering, National Chi Nan University, 2005.

[46] B. Ozdalyan, “Development of A Slip Control Anti-Lock Braking System Model,” International Journal of Automotive Technology, Vol. 9, No. 1, 2008, pp. 71-80. doi:10.1007/s12239-008-0009-6

[47] A. B. Will and S. H. Zak, “Antilock Brake System Modelling and Fuzzy Control,” International Journal of Vehicle Design, Vol. 24, No. 1, 2000, pp. 1-18. doi:10.1504/IJVD.2000.001870

[48] J. R. Layne, K. M. Passino and S. Yurkovich, “Fuzzy Learning Control for Antiskid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129. doi:10.1109/87.238405

[49] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi:10.1109/91.481947

[50] K. Lee and K. Park, “Optimal Robust Control of a Contactless Brake System Using an Eddy Current,” Mechatronics, Vol. 9, No. 6, 1999, pp. 615-631. doi:10.1016/S0957-4158(99)00008-2

[51] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202. doi:10.1109/87.748145

[52] C. Unsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 271-280. doi:10.1109/87.748153

[53] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller Part I, II,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, 1990, pp. 404-435. doi:10.1109/21.52551

[54] S.W. Kim and J.J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, Vol. 71, No. 3, 1995, pp. 359-369. doi:10.1016/0165-0114(94)00276-D

[55] B. J. Choi, S. W. Kwak and B. K. Kim, “Design of a Single-Input Fuzzy Logic Controller and Its Properties,” Fuzzy Sets Systems, Vol. 106, No. 3, 1999, pp. 299-308. doi:10.1016/S0165-0114(97)00283-2

[56] S. Kumar, K. L. Verghese and K. K. Mahapatra, “Fuzzy Logic Based Integrated Control of Anti-Lock Brake System and Collision Avoidance System Using CAN for Electric Vehicles,” IEEE International Conference on Industrial Technology, Gippsland, 2009, pp. 1-5. doi:10.1109/ICIT.2009.4939720

[57] L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis,” Prentice-Hall, Inc., Upper Saddle River, 1994.

[58] H. Lee and M. Tomizuka, “Robust Adaptive Control Using a Universal Approximator for SISO Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 1, 2001, pp. 95-106.

[59] C. K. Chen and M. C. Shih, “PID Type Fuzzy Control for Antilock Brake System with Parameter Adaptation,” JSME International Journal, Series C, Vol. 47, No. 2, 2004, pp. 675-685. doi:10.1299/jsmec.47.675

[60] C.-M. Lin, C.-F. Hsu, “Self-Learning Fuzzy Sliding-Mode Control for Antilock Braking Systems,” IEEE Transactions On Control Systems Technology, Vol. 11, No. 2, 2003, pp. 273-278. doi:10.1109/TCST.2003.809246

[61] H. Tan and M. Tomizuka, “A Discrete-Time Robust Vehicle Traction Controller Design,” American Controls Conference, Pittsburgh, 1989, pp. 1053-1058.

[62] H. Tan and M. Tomizuka, “Discrete-Time Controller Design for Robust Vehicle Traction,” IEEE Control Systems Magazine, Vol. 10, No. 3, 1990, pp. 107-113. doi:10.1109/37.55132

[63] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. 30, No. 3, 1981, pp.134-144. doi:10.1109/T-VT.1981.23895

[64] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock- Up Control System of Mitsubishi Starion,” SAE paper 830482, 1983.

[65] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IECON, Vol. 1, pp. 390-395, 1985.

[66] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” US Patent No. 4842342, 1989.

[67] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, 1972, pp. 855-880.

[68] J. R. Laynet, K. M. Passinot and S. Yurkovich, “Fuzzy Learning Control for Anti-Skid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129. doi:10.1109/87.238405

[69] J. Laynet and K. M. Passino, “Fuzzy Model Reference Learning Control for Cargo Ship Steering,” IEEE Control Systems Magazine, Vol. 13, No. 6, September 1992, pp. 23-24. doi:10.1109/37.248001

[70] R-E. Precup, St. Preitl, M. Balas, V. Balas, “Fuzzy Controllers for Tire Slip Control in Anti-lock Braking Systems,” IEEE International Conference on Fuzzy Systems, Budapest, 2004, pp. 1317-1322.

[71] M. Stan, R.-E. Precup and S. A. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[72] R. Keshmiri and A. M. Shahri, “Intelligent ABS Fuzzy Controller for Diverse Road Surfaces,” World Academy of Science, Engineering and Technology, Vol. 2, No. 2, 2007, pp. 62-67.

[73] M. Karak?se and E. Akin, “Dynamical Fuzzy Control with Block Based Neural Network,” Technical Report, Department of Computer Engineering, F?rat University, 2006.

[74] A. A. Aly, “Intelligent Fuzzy Control for Antilock Brake System with Road-Surfaces Identifier,” 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, 2010, pp. 2292-2299.

[1] P. M. Hart, “Review of Heavy Vehicle Braking Systems Requirements (PBS Requirements),” Draft Report, 24 April 2003.

[2] M. Maier and K. Muller “The New and Compact ABS Unit for Passenger Cars,” SAE Paper No.950757, 1996.

[3] P. E. Wellstead and N. B. O. L. Pettit, “Analysis and Redesign of an Antilock Brake System Controller,” IEE Proceedings Control Theory Applications, Vol. 144, No. 5, 1997, pp. 413-426. doi:10.1049/ip-cta:19971441

[4] A. G. Ulsoy and H. Peng, “Vehicle Control Systems,” Lecture Notes, ME 568, 1997.

[5] P. E. Wellstead, “Analysis and Redesign of an Antilock Brake System Controller,” IEEE Proceedings Control Theory Applications, Vol. 144, No. 5, September 1997, pp. 413-426. doi: 10.1049/ip-cta:19971441

[6] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. VT-30, No. 3, 1981, pp. 134- 144. doi:10.1109/T-VT.1981.23895

[7] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock-Up Control System of Mitsubishi Starion,” SAE Paper, Washington, 1983.

[8] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IEEE Proceedings, San Francisco, 1985, pp. 390-395.

[9] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” U.S. Patent No. 4842342, 1989.

[10] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, Vol. 186, No. 68. 1972, pp. 855-880. doi:10.1243/PIME_PROC_1972_186_102_02

[11] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi:10.1109/91.481947

[12] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202.

[13] B. Lojko and P. Fuchs, “The Control of ASR System in a Car Based on the TMS320F243 DSP,” Diploma Thesis, Dept. of Radio & Electronics, Bratislava, 2002.

[14] P. Hart, “ABS Braking Requirements,” Hartwood Consulting Pty Ltd , Victoria, June 2003.

[15] Q. Ming, “Sliding Mode Controller Design for ABS System,” MSc Thesis, Virginia Polytechnic Institute and State University, 1997.

[16] M. Stan, R.-E. Precup and A. S. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[17] S. Drakunov, U. Ozgiiner and P. Dix, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transaction on Control Systems Technology, Vo1. 3 No. 1, March 1995, pp. 79-85.

[18] National Semiconductor Inc., “Adaptive Braking Systems (ABS),” US Patent No. 3825305, 1974.

[19] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi: 10.1109/91.481947

[20] J. Song, H. Kim and K. Boo, “A study on an Anti-Lock Braking System Controller and Rear-Wheel Controller to Enhance Vehicle Lateral Stability,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221 No. 7, 2007, pp. 777-787. doi:10.1243/09544070JAUTO225

[21] F. Jiang, “An Application of Nonlinear PID Control to a Class of Truck ABS Problems,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, 2000, pp. 516-521.

[22] M. Tanellia, A. Astolfi and S. M. Savaresi, “Robust Nonlinear Output Feedback Control for Brake by Wire Control Systems,” Automatica, Vol. 44, No. 4, 2008, pp. 1078-1087. doi:10.1016/j.automatica.2007.08.020

[23] R. Freeman, “Robust Slip Control for a Single Wheel,” University of California, Santa Barbara, 1995.

[24] J. S. Yu, “A Robust Adaptive Wheel-Slip Controller for Antilock Brake System,” Proceedings of 36th IEEE Conferrence on Decision Control, San Diego, 1997, pp. 2545-2546.

[25] J. Yi, L. Alvarez, R. Horowitz and C. C. DeWit, “Adaptive Emergency Braking Control Using a Dynamical Tire/Road Friction Model,” Proceedings of 39th IEEE Conference on Decision Control, Sydney, 2000, pp. 456-461.

[26] J. Lüdemann, “Heterogeneous and Hybrid Control with Application in Automotive Systems,” Ph.D. dissertation, Glasgow University, 2002.

[27] Y. Liu and J. Sun, “Target Slip Tracking Using Gain-Scheduling for Braking Systems,” Proceedings of the 1995 American Control Conference, Seattle, 1995, pp. 1178-1182.

[28] S. Taheri and E. H. Law, “Slip Control Braking of an Automobile during Combined Braking and Steering Manoeuvres,” American Society of Magazine Editors, Vol. 40, No. 1, 1991, pp. 209-227.

[29] C. Jun, “The Study of ABS Control System with Different Control Methods,” Proceedings of the 4th International Symposium on Advanced Vehicle Control, Nagoya, 1998, pp. 623-628.

[30] F. Jiang, “A Novel Approach to a Class of Antilock Brake Problems,” Ph.D. Dissertation, Cleveland State University, Cleveland, 2000.

[31] Y. Wang, T. Schmitt-Hartmann, M. Schinkel and K. J. Hunt, “A New Approach to Simultaneous Stabilization and Strong Simultaneous Stabilization with D Stability and Its Application to ABS Control Systems Design,” European Control Conference, Porto, 2001, pp. 1291-1294.

[32] S. Solyom, “Synthesis of a Model-Based Tire Slip Controller,” Synthesis of a Model-Based Tire Slip Controller, Vol. 41, No. 6, 2004, pp. 475-499.

[33] S. Drakunov, ü. ?zgüner, P. Dix, and B. Ashrafi, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transactions on Control Systems Technology, Vol. 3, 1995, pp. 79-85. doi:10.1109/87.370698

[34] M. Schinkel and K. Hunt, “Anti-lock Braking Control Using a Sliding Mode Like Approach,” Proceedings of the 2002 American Control Conference, Anchorage, 2002, pp. 2386-2391.

[35] M. C. Wu and M. C. Shih, “Hydraulic Anti-Lock Braking Control Using the Hybrid Sliding-Mode Pulse Width Modulation Pressure Control Method,” Proceedings of the Institution of Mechanical Engineers, Vol. 215, 2001, pp. 177-187. doi:10.1109/87.748153

[36] C. ünsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, March 1999, pp. 271-281.

[37] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical report of Department of Electrical Engineering, National Chi Nan University, 2005.

[38] R.-G. Wang, Z.-D. Liu and Z.-Q. Qi, “Multiple Model Adaptive Control of Antilock Brake System via Backstepping Approach,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, 2005, pp. 591-595.

[39] T. A. Johansen, J. Kalkkuhl, J. Lüdemann and I. Petersen, “Hybrid Control Strategies in ABS,” Proceedings of the 2001 American Control Conference, Arlington 2001, pp. 1704-1705.

[40] H. S. Tan and M. Tomizuka, “An Adaptive Sliding Mode Vehicle Traction Controller Design,” Proceedings of the 1989 American Control Conference, Pittsburgh, 1989, pp. 1053-1058.

[41] Y. K. Chin, W. C. Lin and D. Sidlosky, “Sliding-Mode ABS Wheel Slip Control,” Proceedings of 1992 ACC, Chicago, 1992, pp. 1-6.

[42] J. C. Gerdes, A. S. Brown and J. K. Hedrick, “Brake System Modeling for Vehicle Control,” Proceedings International Mechanical Engineering Congress and Exposition, San Francisco, 1995, pp. 4756-4763.

[43] D. Cho and J. K. Hedrick, “Automotive Powertrain Modeling for Control,” Transactions ASME Journal of Dynamic Systems, Measurements and Control, Vol.111, No.4, December 1989, pp. 568-576. doi:10.1115/1.3153093

[44] E. Kayacan and O. Kaynak, “A Grey System Modeling Approach for Sliding Mode Control of Antilock Braking System,” IEEE Transactions On Industrial Electronics, Vol. 56, No. 8, August 2009, pp. 3244-3252. doi:10.1109/TIE.2009.2023098

[45] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical Report of Department of Electrical Engineering, National Chi Nan University, 2005.

[46] B. Ozdalyan, “Development of A Slip Control Anti-Lock Braking System Model,” International Journal of Automotive Technology, Vol. 9, No. 1, 2008, pp. 71-80. doi:10.1007/s12239-008-0009-6

[47] A. B. Will and S. H. Zak, “Antilock Brake System Modelling and Fuzzy Control,” International Journal of Vehicle Design, Vol. 24, No. 1, 2000, pp. 1-18. doi:10.1504/IJVD.2000.001870

[48] J. R. Layne, K. M. Passino and S. Yurkovich, “Fuzzy Learning Control for Antiskid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129. doi:10.1109/87.238405

[49] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi:10.1109/91.481947

[50] K. Lee and K. Park, “Optimal Robust Control of a Contactless Brake System Using an Eddy Current,” Mechatronics, Vol. 9, No. 6, 1999, pp. 615-631. doi:10.1016/S0957-4158(99)00008-2

[51] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202. doi:10.1109/87.748145

[52] C. Unsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 271-280. doi:10.1109/87.748153

[53] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller Part I, II,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, 1990, pp. 404-435. doi:10.1109/21.52551

[54] S.W. Kim and J.J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, Vol. 71, No. 3, 1995, pp. 359-369. doi:10.1016/0165-0114(94)00276-D

[55] B. J. Choi, S. W. Kwak and B. K. Kim, “Design of a Single-Input Fuzzy Logic Controller and Its Properties,” Fuzzy Sets Systems, Vol. 106, No. 3, 1999, pp. 299-308. doi:10.1016/S0165-0114(97)00283-2

[56] S. Kumar, K. L. Verghese and K. K. Mahapatra, “Fuzzy Logic Based Integrated Control of Anti-Lock Brake System and Collision Avoidance System Using CAN for Electric Vehicles,” IEEE International Conference on Industrial Technology, Gippsland, 2009, pp. 1-5. doi:10.1109/ICIT.2009.4939720

[57] L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis,” Prentice-Hall, Inc., Upper Saddle River, 1994.

[58] H. Lee and M. Tomizuka, “Robust Adaptive Control Using a Universal Approximator for SISO Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 1, 2001, pp. 95-106.

[59] C. K. Chen and M. C. Shih, “PID Type Fuzzy Control for Antilock Brake System with Parameter Adaptation,” JSME International Journal, Series C, Vol. 47, No. 2, 2004, pp. 675-685. doi:10.1299/jsmec.47.675

[60] C.-M. Lin, C.-F. Hsu, “Self-Learning Fuzzy Sliding-Mode Control for Antilock Braking Systems,” IEEE Transactions On Control Systems Technology, Vol. 11, No. 2, 2003, pp. 273-278. doi:10.1109/TCST.2003.809246

[61] H. Tan and M. Tomizuka, “A Discrete-Time Robust Vehicle Traction Controller Design,” American Controls Conference, Pittsburgh, 1989, pp. 1053-1058.

[62] H. Tan and M. Tomizuka, “Discrete-Time Controller Design for Robust Vehicle Traction,” IEEE Control Systems Magazine, Vol. 10, No. 3, 1990, pp. 107-113. doi:10.1109/37.55132

[63] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. 30, No. 3, 1981, pp.134-144. doi:10.1109/T-VT.1981.23895

[64] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock- Up Control System of Mitsubishi Starion,” SAE paper 830482, 1983.

[65] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IECON, Vol. 1, pp. 390-395, 1985.

[66] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” US Patent No. 4842342, 1989.

[67] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, 1972, pp. 855-880.

[68] J. R. Laynet, K. M. Passinot and S. Yurkovich, “Fuzzy Learning Control for Anti-Skid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129. doi:10.1109/87.238405

[69] J. Laynet and K. M. Passino, “Fuzzy Model Reference Learning Control for Cargo Ship Steering,” IEEE Control Systems Magazine, Vol. 13, No. 6, September 1992, pp. 23-24. doi:10.1109/37.248001

[70] R-E. Precup, St. Preitl, M. Balas, V. Balas, “Fuzzy Controllers for Tire Slip Control in Anti-lock Braking Systems,” IEEE International Conference on Fuzzy Systems, Budapest, 2004, pp. 1317-1322.

[71] M. Stan, R.-E. Precup and S. A. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[72] R. Keshmiri and A. M. Shahri, “Intelligent ABS Fuzzy Controller for Diverse Road Surfaces,” World Academy of Science, Engineering and Technology, Vol. 2, No. 2, 2007, pp. 62-67.

[73] M. Karak?se and E. Akin, “Dynamical Fuzzy Control with Block Based Neural Network,” Technical Report, Department of Computer Engineering, F?rat University, 2006.

[74] A. A. Aly, “Intelligent Fuzzy Control for Antilock Brake System with Road-Surfaces Identifier,” 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, 2010, pp. 2292-2299.