An Antilock-Braking Systems (ABS) Control: A Technical Review

References

[1] P. M. Hart, “Review of Heavy Vehicle Braking Systems Requirements (PBS Requirements),” Draft Report, 24 April 2003.

[2] M. Maier and K. Muller “The New and Compact ABS Unit for Passenger Cars,” SAE Paper No.950757, 1996.

[3] P. E. Wellstead and N. B. O. L. Pettit, “Analysis and Redesign of an Antilock Brake System Controller,” IEE Proceedings Control Theory Applications, Vol. 144, No. 5, 1997, pp. 413-426. doi:10.1049/ip-cta:19971441

[4] A. G. Ulsoy and H. Peng, “Vehicle Control Systems,” Lecture Notes, ME 568, 1997.

[5] P. E. Wellstead, “Analysis and Redesign of an Antilock Brake System Controller,” IEEE Proceedings Control Theory Applications, Vol. 144, No. 5, September 1997, pp. 413-426. doi: 10.1049/ip-cta:19971441

[6] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. VT-30, No. 3, 1981, pp. 134- 144. doi:10.1109/T-VT.1981.23895

[7] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock-Up Control System of Mitsubishi Starion,” SAE Paper, Washington, 1983.

[8] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IEEE Proceedings, San Francisco, 1985, pp. 390-395.

[9] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” U.S. Patent No. 4842342, 1989.

[10] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, Vol. 186, No. 68. 1972, pp. 855-880.
doi:10.1243/PIME_PROC_1972_186_102_02

[11] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388.
doi:10.1109/91.481947

[12] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202.

[13] B. Lojko and P. Fuchs, “The Control of ASR System in a Car Based on the TMS320F243 DSP,” Diploma Thesis, Dept. of Radio & Electronics, Bratislava, 2002.

[14] P. Hart, “ABS Braking Requirements,” Hartwood Consulting Pty Ltd , Victoria, June 2003.

[15] Q. Ming, “Sliding Mode Controller Design for ABS System,” MSc Thesis, Virginia Polytechnic Institute and State University, 1997.

[16] M. Stan, R.-E. Precup and A. S. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[17] S. Drakunov, U. Ozgiiner and P. Dix, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transaction on Control Systems Technology, Vo1. 3 No. 1, March 1995, pp. 79-85.

[18] National Semiconductor Inc., “Adaptive Braking Systems (ABS),” US Patent No. 3825305, 1974.

[19] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388.
doi: 10.1109/91.481947

[20] J. Song, H. Kim and K. Boo, “A study on an Anti-Lock Braking System Controller and Rear-Wheel Controller to Enhance Vehicle Lateral Stability,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 221 No. 7, 2007, pp. 777-787. doi:10.1243/09544070JAUTO225

[21] F. Jiang, “An Application of Nonlinear PID Control to a Class of Truck ABS Problems,” Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, 2000, pp. 516-521.

[22] M. Tanellia, A. Astolfi and S. M. Savaresi, “Robust Nonlinear Output Feedback Control for Brake by Wire Control Systems,” Automatica, Vol. 44, No. 4, 2008, pp. 1078-1087. doi:10.1016/j.automatica.2007.08.020

[23] R. Freeman, “Robust Slip Control for a Single Wheel,” University of California, Santa Barbara, 1995.

[24] J. S. Yu, “A Robust Adaptive Wheel-Slip Controller for Antilock Brake System,” Proceedings of 36th IEEE Conferrence on Decision Control, San Diego, 1997, pp. 2545-2546.

[25] J. Yi, L. Alvarez, R. Horowitz and C. C. DeWit, “Adaptive Emergency Braking Control Using a Dynamical Tire/Road Friction Model,” Proceedings of 39th IEEE Conference on Decision Control, Sydney, 2000, pp. 456-461.

[26] J. Lüdemann, “Heterogeneous and Hybrid Control with Application in Automotive Systems,” Ph.D. dissertation, Glasgow University, 2002.

[27] Y. Liu and J. Sun, “Target Slip Tracking Using Gain-Scheduling for Braking Systems,” Proceedings of the 1995 American Control Conference, Seattle, 1995, pp. 1178-1182.

[28] S. Taheri and E. H. Law, “Slip Control Braking of an Automobile during Combined Braking and Steering Manoeuvres,” American Society of Magazine Editors, Vol. 40, No. 1, 1991, pp. 209-227.

[29] C. Jun, “The Study of ABS Control System with Different Control Methods,” Proceedings of the 4th International Symposium on Advanced Vehicle Control, Nagoya, 1998, pp. 623-628.

[30] F. Jiang, “A Novel Approach to a Class of Antilock Brake Problems,” Ph.D. Dissertation, Cleveland State University, Cleveland, 2000.

[31] Y. Wang, T. Schmitt-Hartmann, M. Schinkel and K. J. Hunt, “A New Approach to Simultaneous Stabilization and Strong Simultaneous Stabilization with D Stability and Its Application to ABS Control Systems Design,” European Control Conference, Porto, 2001, pp. 1291-1294.

[32] S. Solyom, “Synthesis of a Model-Based Tire Slip Controller,” Synthesis of a Model-Based Tire Slip Controller, Vol. 41, No. 6, 2004, pp. 475-499.

[33] S. Drakunov, ü. ?zgüner, P. Dix, and B. Ashrafi, “ABS Control Using Optimum Search via Sliding Modes,” IEEE Transactions on Control Systems Technology, Vol. 3, 1995, pp. 79-85. doi:10.1109/87.370698

[34] M. Schinkel and K. Hunt, “Anti-lock Braking Control Using a Sliding Mode Like Approach,” Proceedings of the 2002 American Control Conference, Anchorage, 2002, pp. 2386-2391.

[35] M. C. Wu and M. C. Shih, “Hydraulic Anti-Lock Braking Control Using the Hybrid Sliding-Mode Pulse Width Modulation Pressure Control Method,” Proceedings of the Institution of Mechanical Engineers, Vol. 215, 2001, pp. 177-187. doi:10.1109/87.748153

[36] C. ünsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 7, No. 2, March 1999, pp. 271-281.

[37] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical report of Department of Electrical Engineering, National Chi Nan University, 2005.

[38] R.-G. Wang, Z.-D. Liu and Z.-Q. Qi, “Multiple Model Adaptive Control of Antilock Brake System via Backstepping Approach,” Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Guangzhou, 2005, pp. 591-595.

[39] T. A. Johansen, J. Kalkkuhl, J. Lüdemann and I. Petersen, “Hybrid Control Strategies in ABS,” Proceedings of the 2001 American Control Conference, Arlington 2001, pp. 1704-1705.

[40] H. S. Tan and M. Tomizuka, “An Adaptive Sliding Mode Vehicle Traction Controller Design,” Proceedings of the 1989 American Control Conference, Pittsburgh, 1989, pp. 1053-1058.

[41] Y. K. Chin, W. C. Lin and D. Sidlosky, “Sliding-Mode ABS Wheel Slip Control,” Proceedings of 1992 ACC, Chicago, 1992, pp. 1-6.

[42] J. C. Gerdes, A. S. Brown and J. K. Hedrick, “Brake System Modeling for Vehicle Control,” Proceedings International Mechanical Engineering Congress and Exposition, San Francisco, 1995, pp. 4756-4763.

[43] D. Cho and J. K. Hedrick, “Automotive Powertrain Modeling for Control,” Transactions ASME Journal of Dynamic Systems, Measurements and Control, Vol.111, No.4, December 1989, pp. 568-576.
doi:10.1115/1.3153093

[44] E. Kayacan and O. Kaynak, “A Grey System Modeling Approach for Sliding Mode Control of Antilock Braking System,” IEEE Transactions On Industrial Electronics, Vol. 56, No. 8, August 2009, pp. 3244-3252.
doi:10.1109/TIE.2009.2023098

[45] W. Ting and J. Lin, “Nonlinear Control Design of Anti-lock Braking Systems Combined with Active Suspensions,” Technical Report of Department of Electrical Engineering, National Chi Nan University, 2005.

[46] B. Ozdalyan, “Development of A Slip Control Anti-Lock Braking System Model,” International Journal of Automotive Technology, Vol. 9, No. 1, 2008, pp. 71-80.
doi:10.1007/s12239-008-0009-6

[47] A. B. Will and S. H. Zak, “Antilock Brake System Modelling and Fuzzy Control,” International Journal of Vehicle Design, Vol. 24, No. 1, 2000, pp. 1-18.
doi:10.1504/IJVD.2000.001870

[48] J. R. Layne, K. M. Passino and S. Yurkovich, “Fuzzy Learning Control for Antiskid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129.
doi:10.1109/87.238405

[49] G. F. Mauer, “A Fuzzy Logic Controller for an ABS Braking System,” IEEE Transactions on Fuzzy Systems, Vol. 3, No. 4, 1995, pp. 381-388. doi:10.1109/91.481947

[50] K. Lee and K. Park, “Optimal Robust Control of a Contactless Brake System Using an Eddy Current,” Mechatronics, Vol. 9, No. 6, 1999, pp. 615-631.
doi:10.1016/S0957-4158(99)00008-2

[51] W. K. Lennon and K. M. Passino, “Intelligent Control for Brake Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 188-202.
doi:10.1109/87.748145

[52] C. Unsal and P. Kachroo, “Sliding Mode Measurement Feedback Control for Antilock Braking Systems,” IEEE Transctions on Control Systems Technology, Vol. 7, No. 2, 1999, pp. 271-280. doi:10.1109/87.748153

[53] C.C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller Part I, II,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, 1990, pp. 404-435.
doi:10.1109/21.52551

[54] S.W. Kim and J.J. Lee, “Design of a Fuzzy Controller with Fuzzy Sliding Surface,” Fuzzy Sets and Systems, Vol. 71, No. 3, 1995, pp. 359-369.
doi:10.1016/0165-0114(94)00276-D

[55] B. J. Choi, S. W. Kwak and B. K. Kim, “Design of a Single-Input Fuzzy Logic Controller and Its Properties,” Fuzzy Sets Systems, Vol. 106, No. 3, 1999, pp. 299-308.
doi:10.1016/S0165-0114(97)00283-2

[56] S. Kumar, K. L. Verghese and K. K. Mahapatra, “Fuzzy Logic Based Integrated Control of Anti-Lock Brake System and Collision Avoidance System Using CAN for Electric Vehicles,” IEEE International Conference on Industrial Technology, Gippsland, 2009, pp. 1-5.
doi:10.1109/ICIT.2009.4939720

[57] L. X. Wang, “Adaptive Fuzzy Systems and Control: Design and Stability Analysis,” Prentice-Hall, Inc., Upper Saddle River, 1994.

[58] H. Lee and M. Tomizuka, “Robust Adaptive Control Using a Universal Approximator for SISO Nonlinear Systems,” IEEE Transactions on Fuzzy Systems, Vol. 8, No. 1, 2001, pp. 95-106.

[59] C. K. Chen and M. C. Shih, “PID Type Fuzzy Control for Antilock Brake System with Parameter Adaptation,” JSME International Journal, Series C, Vol. 47, No. 2, 2004, pp. 675-685. doi:10.1299/jsmec.47.675

[60] C.-M. Lin, C.-F. Hsu, “Self-Learning Fuzzy Sliding-Mode Control for Antilock Braking Systems,” IEEE Transactions On Control Systems Technology, Vol. 11, No. 2, 2003, pp. 273-278.
doi:10.1109/TCST.2003.809246

[61] H. Tan and M. Tomizuka, “A Discrete-Time Robust Vehicle Traction Controller Design,” American Controls Conference, Pittsburgh, 1989, pp. 1053-1058.

[62] H. Tan and M. Tomizuka, “Discrete-Time Controller Design for Robust Vehicle Traction,” IEEE Control Systems Magazine, Vol. 10, No. 3, 1990, pp. 107-113.
doi:10.1109/37.55132

[63] R. Fling and R. Fenton, “A Describing-Function Approach to Antiskid Design,” IEEE Transactions on Vehicular Technology, Vol. 30, No. 3, 1981, pp.134-144.
doi:10.1109/T-VT.1981.23895

[64] S. Yoneda, Y. Naitoh and H. Kigoshi, “Rear Brake Lock- Up Control System of Mitsubishi Starion,” SAE paper 830482, 1983.

[65] T. Tabo, N. Ohka, H. Kuraoka and M. Ohba, “Automotive Antiskid System Using Modern Control Theory,” IECON, Vol. 1, pp. 390-395, 1985.

[66] H. Takahashi and Y. Ishikawa, “Anti-Skid Braking Control System Based on Fuzzy Inference,” US Patent No. 4842342, 1989.

[67] R. Guntur and H. Ouwerkerk, “Adaptive Brake Control System,” Proceedings of the Institution of Mechanical Engineers, 1972, pp. 855-880.

[68] J. R. Laynet, K. M. Passinot and S. Yurkovich, “Fuzzy Learning Control for Anti-Skid Braking Systems,” IEEE Transactions on Control Systems Technology, Vol. 1, No. 2, 1993, pp. 122-129. doi:10.1109/87.238405

[69] J. Laynet and K. M. Passino, “Fuzzy Model Reference Learning Control for Cargo Ship Steering,” IEEE Control Systems Magazine, Vol. 13, No. 6, September 1992, pp. 23-24. doi:10.1109/37.248001

[70] R-E. Precup, St. Preitl, M. Balas, V. Balas, “Fuzzy Controllers for Tire Slip Control in Anti-lock Braking Systems,” IEEE International Conference on Fuzzy Systems, Budapest, 2004, pp. 1317-1322.

[71] M. Stan, R.-E. Precup and S. A. Paul, “Analysis of Fuzzy Control Solutions for Anti-Lock Braking Systems,” Journal of Control Engineering and Applied Informatics, Vol. 9, No. 2, 2007, pp. 11-22.

[72] R. Keshmiri and A. M. Shahri, “Intelligent ABS Fuzzy Controller for Diverse Road Surfaces,” World Academy of Science, Engineering and Technology, Vol. 2, No. 2, 2007, pp. 62-67.

[73] M. Karak?se and E. Akin, “Dynamical Fuzzy Control with Block Based Neural Network,” Technical Report, Department of Computer Engineering, F?rat University, 2006.

[74] A. A. Aly, “Intelligent Fuzzy Control for Antilock Brake System with Road-Surfaces Identifier,” 2010 IEEE International Conference on Mechatronics and Automation, Xi’an, 2010, pp. 2292-2299.