Back
 JEP  Vol.7 No.6 , May 2016
Optimization of Air Quality Monitoring Network Using GIS Based Interpolation Techniques
Abstract:

This paper proposes a simple method of optimizing Air Quality Monitoring Network (AQMN) using Geographical Information System (GIS), interpolation techniques and historical data. Existing air quality stations are systematically eliminated and the missing data are filled in using the most appropriate interpolation technique. The interpolated data are then compared with the observed data. Pre-defined performance measures root mean square error (RMSE), mean absolute percentage error (MAPE) and correlation coefficient (r) were used to check the accuracy of the interpolated data. An algorithm was developed in GIS environment and the process was simulated for several sets of measurements conducted in different locations in Riyadh, Saudi Arabia. This methodology proves to be useful to the decision makers to find optimal numbers of stations that are needed without compromising the coverage of the concentrations across the study area.

Cite this paper: Shareef, M. , Husain, T. and Alharbi, B. (2016) Optimization of Air Quality Monitoring Network Using GIS Based Interpolation Techniques. Journal of Environmental Protection, 7, 895-911. doi: 10.4236/jep.2016.76080.
References

[1]   Koda, M. and Seinfeld, J.H. (1978) Air Monitoring Siting by Objective. EPA-600/4-7-036. US Environmental Protection Agency, Las Vegas.

[2]   Caselton, W.F. and Husain, T. (1980) Hydrologic Networks: Information Transmission, Journal of the Water Resources Planning and Management Division, ASCE, 106, 503-520.

[3]   Hougland, E.S., Oades, T.W. and Shank, K.E. (1980) Design of the SO2 and Particulate Air Monitoring Network for the Oak Ridge National Laboratory Fossil Steam Plant. Proceedings of the UCC-ND and GAT Waste Management Seminar, Friendship, 22-23 April 1980, 255-264.

[4]   Pickett, E.E. and Whiting, R.G. (1981) The Design of Cost-Effective Air Quality Monitoring Networks. Environmental Monitoring and Assessment, 1, 59.
http://dx.doi.org/10.1007/BF00836876

[5]   Husain, T. and Khan, S.M. (1983) Air Monitoring Network Design Using Fisher’s Information Measures—A Case Study. Atmospheric Environment, 17, 2591-2598.
http://dx.doi.org/10.1016/0004-6981(83)90087-2

[6]   Handscombe, C.M. and Elson, D.M. (1982) Rationalisation of the National Survey of Air Pollution Monitoring Network of the United Kingdom Using Spatial Correlation Analysis: A Case Study of the Greater London Area. Atmospheric Environment, 4B, 395.
http://dx.doi.org/10.1016/0004-6981(82)90195-0

[7]   Arbeloa, S.F.J., Caseiras, C.P. and Andres, P.M.L. (1993) Air Quality Monitoring: Optimization of a Network around a Hypothetical Potash Plant in Open Countryside. Atmospheric Environment, 27A, 729-738.
http://dx.doi.org/10.1016/0960-1686(93)90190-A

[8]   Noll, K.E. and Mitsutomi, S. (1983) Design Methodology for Optimum Dosage Air Monitoring Site Selection. Atmospheric Environment, 17, 2583-2590.
http://dx.doi.org/10.1016/0004-6981(83)90086-0

[9]   Nakamori, Y. and Sawarangi, Y. (1984) Interactive Design of Urban Level Air Quality Monitoring Network. Atmospheric Environment, 8, 793-799.
http://dx.doi.org/10.1016/0004-6981(84)90263-4

[10]   Caselton, W.F. and Zidek, J.V. (1984) Optimal Monitoring Networks Designs. Statistics and Probability Letters, 2, 223-227.
http://dx.doi.org/10.1016/0167-7152(84)90020-8

[11]   Sampson, P.D. and Guttorp, P. (1992) Nonparametric Estimation of Nonstationary Spatial Covariance Structure. Journal of the American Statistics Association, 87, 108-126.
http://dx.doi.org/10.1080/01621459.1992.10475181

[12]   Guttorp, P., Le, N.D., Sampson, P.D. and Zidek, J.V. (1993) Using Entropy in the Redesign of an Environmental Monitoring Network. Technical Report, Department of Statistics, University of British, Columbia, 116.

[13]   Perez-Abreu, V. and Rodriguez, J.E. (1996) Index of Effectiveness of a Multivariate Environmental Monitoring Network. Environmetrics, 7, 489-501.
http://dx.doi.org/10.1002/(sici)1099-095x(199609)7:5<489::aid-env224>3.0.co;2-0

[14]   McElroy, J.L., Behar, J.V., Meyers, T.C. and Liu, M.K. (1986) Methodology for Designing Air Quality Monitoring Networks: II. Application to Las Vegas, Nevada, for Carbon Monoxide. Environmental Monitoring and Assessment, 6, 13-34.
http://dx.doi.org/10.1007/BF00394285

[15]   Richard, W.B., Russell, W.W. and David, K.H. (2002) Methodology for Siting Ambient Air Monitors at the Neighborhood Scale. Journal of the Air & Waste Management Association, 52, 1433-1442.
http://dx.doi.org/10.1080/10473289.2002.10470870

[16]   Kainuma, Y., Shiozawa, K. and Okamoto, S. (1990) Study of the Optimal Allocation of Ambient Air Monitoring Stations. Atmospheric Environment. Part B. Urban Atmosphere, 24, 395-406.
http://dx.doi.org/10.1016/0957-1272(90)90047-x

[17]   Trujillo-Ventura, A. and Ellis, J.H. (1991) Multiobjective Air Pollution Monitoring Network Design. Atmospheric Environment. Part A. General Topics, 25, 469-479.
http://dx.doi.org/10.1016/0960-1686(91)90318-2

[18]   Chen, C., Liu, W. and Chen, C. (2006) Development of Multiple Objective Planning Theory and System for Sustainable Air Quality Monitoring Networks. Science of the Total Environment, 354, 1-19.
http://dx.doi.org/10.1016/j.scitotenv.2005.08.018

[19]   Mofarrah, A. and Husain, T. (2010) A Holistic Approach for Optimal Design of Air Quality Monitoring Network Expansion in an Urban Area. Atmospheric Environment, 44, 432-440.
http://dx.doi.org/10.1016/j.atmosenv.2009.07.045

[20]   Tseng, C.C. and Ni-Bin, C. (2001) Assessing Relocation Strategies of Urban Air Quality Monitoring Stations by GA-Based Compromise Programming. Environment International, 26, 523-541.
http://dx.doi.org/10.1016/S0160-4120(01)00036-8

[21]   Silva, C. and Quiroz, A. (2003) Optimization of the Atmospheric Pollution Monitoring Network at Santiago de Chile. Atmospheric Environment, 37, 2337-2345.
http://dx.doi.org/10.1016/S1352-2310(03)00152-3

[22]   Elkamel, A., Fatehifar, E., Taheri, M., Al-Rashidi, M.S. and Lohi, A. (2008) A Heuristic Optimization Approach for Air Quality Monitoring Network Design with the Simultaneous Consideration of Multiple Pollutants. Journal of Environmental Management, 88, 507-516.
http://dx.doi.org/10.1016/j.jenvman.2007.03.029

[23]   Lu, W., He, H. and Dong, L. (2011) Performance Assessment of Air Quality Monitoring Networks Using Principal Component Analysis and Cluster Analysis. Building and Environment, 46, 577-583.
http://dx.doi.org/10.1016/j.buildenv.2010.09.004

[24]   Dogruparmak, S.C., Keskin, G.A., Yaman, S. and Alkan, A. (2014) Using Principal Component Analysis and Fuzzy C-Means Clustering for the Assessment of Air Quality Monitoring. Atmospheric Pollution Research, 5, 656-663.
http://dx.doi.org/10.5094/APR.2014.075

[25]   Ferradas, G.F., Minarro, M.M., Terres, I.M.M. and Martinez, F.J.M. (2010) An Approach for Determining Air Pollution Monitoring Sites. Atmospheric Environment, 44, 2640-2645. http://dx.doi.org/10.1016/j.atmosenv.2010.03.044

[26]   Bayraktar, H. and Turalioglu, F.S. (2005) A Kriging-Based Approach for Locating a Sampling Site—In the Assessment of Air Quality. Stochastic Environmental Research and Risk Assessment, 19, 301-305.
http://dx.doi.org/10.1007/s00477-005-0234-8

[27]   Kassteele, J., Stein, A., Dekkers, A.L.M. and Velder, G.J.M. (2009) External Drift Kriging of NOx Concentrations with Dispersion Model Output in a Reduced Air Quality Monitoring Network. Environmental and Ecological Statistics, 16, 321-339.
http://dx.doi.org/10.1007/s10651-007-0052-x

[28]   Smith, L., Mukerjee, S., Gonzales, M., Stallings, C., Neas, L., Norris, G. and Ozkayanak, H. (2006) Use of GIS and Ancillary Variables to Predict Volatile Organic Compound and Nitrogen Dioxide Levels at Unmonitored Locations. Atmospheric Environment, 40, 3773-3787.
http://dx.doi.org/10.1016/j.atmosenv.2006.02.036

[29]   Beelan, R., Hoek, G., Pebesma, E., Vienneau, D., de Hoogh, K. and Briggs, D.J. (2009) Mapping of Background Air Pollution at a Fine Spatial Scale across the European Union. Science of the Total Environment, 407, 1852-1867.
http://dx.doi.org/10.1016/j.scitotenv.2008.11.048

[30]   Leitenstorfer, F. and Tutz, G. (2006) Generalized Monotonic Regression Based on B-Splines with an Application to Air Pollution Data. Biostatistics, 8, 654-673.
http://dx.doi.org/10.1093/biostatistics/kxl036

[31]   Duncan, L. (2012) Using Spline Models to Estimate the Varying Health Risks from Air Pollution across Scotland. Statistics in Medicine, 31, 3366-3378.
http://dx.doi.org/10.1002/sim.5420

[32]   Alharbi, B., Shareef, M.M. and Husain, T. (2015) Study of Chemical Characteristics of Particulate Matter Concentrations in Riyadh, Saudi Arabia. Atmospheric Pollution Research, 6, 88-98.
http://dx.doi.org/10.5094/APR.2015.011

[33]   ESRI. Redlands, USA. http://www.esri.com

[34]   Wong, D.W., Yuan, L. and Perlin, S.A. (2004) Comparison of Spatial Interpolation Methods for the Estimation of Air Quality Data. Journal of Exposure Analysis and Environmental Epidemiology, 14, 404-415.
http://dx.doi.org/10.1038/sj.jea.7500338

[35]   Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P. and van den Brandt, P.A. (2002). Association between Mortality and Indicators of Traffic-Related Air Pollution in the Netherlands: A Cohort Study. Lancet, 360, 1203-1209.
http://dx.doi.org/10.1016/S0140-6736(02)11280-3

[36]   Jerrett, M., Shi, Y.L., Gapstur, S.M., Thun, M.J., Pope, C.A., Burnett, R.T., Beckerman, B.S., Turner, M.C., Krewski, D., Thurston, G., Martin, R.V., van Donkelaar, A., Hughes, E., et al. (2013) Spatial Analysis of Air Pollution and Mortality in California. American Journal of Respiratory and Critical Care Medicine, 188, 593-599.
http://dx.doi.org/10.1164/rccm.201303-0609OC

[37]   Burrough, P. and McDonnell, R. (1998) Principles of Geographic Information Systems. Oxford University Press, New York.

[38]   Liu, L.J.S. and Rossini, A.J. (1996) Use of Kriging Models to Predict 12-Hour Mean Ozone Concentrations in Metropolitan Toronto—A Pilot Study. Environment International, 22, 677-692.
http://dx.doi.org/10.1016/S0160-4120(96)00059-1

[39]   Cressie, N. (2006) Block Kriging and Lognormal Spatial Processes. Mathematical Geology, 38, 413-443.
http://dx.doi.org/10.1007/s11004-005-9022-8

[40]   Lefohn, A.S. and Pinkerton, J.E. (1988) High Resolution Characterization of Ozone Data for Sites Located in Forested Areas of the United States. Journal of the Air Pollution Control Association, 38, 1504-1511.
http://dx.doi.org/10.1080/08940630.1988.10466489

[41]   Zou, B., Zhan, F.B., Zeng, Y., Yorke, C. and Liu, X. (2011) Performance of Kriging and EWPM for Relative Air Pollution Exposure Risk Assessment. International Journal of Environmental Research, 5, 769-778.

[42]   Shad, R., Mesgari, M.S., Abkar, A. and Shad, A. (2009) Predicting Air Pollution Using Fuzzy Linear Membership Kriging in GIS. Computers, Environment and Urban Systems, 33, 472-481.
http://dx.doi.org/10.1016/j.compenvurbsys.2009.10.004

[43]   Nash, J.E. and Sutcliffe, I.V. (1970) River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. Journal of Hydrology, 10, 282-290.
http://dx.doi.org/10.1016/0022-1694(70)90255-6

[44]   Ross, T. (1996) Indices for Performance Evaluation of Predictive Models in Food Microbiology. Journal of Applied Microbiology, 81, 501-508.

[45]   Monteiro, A., Ribero, I., Tchepel, O., Sa, E., Ferreira, J., Carvalha, A., Martins, V., Strunk, A., Galmarini, S., Elbern, H., Schaap, M., Builtjes, P., Miranda, A.I. and Borrego, C. (2013) Bias Correction Techniques to Improve Air Quality Ensemble Predictions: Focus on O3 and PM over Portugal. Environmental Modeling & Assessment, 18, 533-546.
http://dx.doi.org/10.1007/s10666-013-9358-2

[46]   Son, J.-Y., Bell, M.L. and Lee, J.-T. (2010) Individual Exposure to Air Pollution and Lung Function in Korea: Spatial Analysis Using Multiple Exposure Approaches. Environmental Research, 110, 739-749.
http://dx.doi.org/10.1016/j.envres.2010.08.003

[47]   Singh, K.P., Gupta, S., Kumar, A. and Shukla, S.P. (2012) Linear and Nonlinear Modeling Approaches for Urban Air Quality Prediction. Science of the Total Environment, 426, 244-255.
http://dx.doi.org/10.1016/j.scitotenv.2012.03.076

[48]   Zhao, N., Zeng, X. and Han, S. (2013) Solar Radiation Estimation Using Sunshine Hour and Air Pollution Index in China. Energy Conversion and Management, 76, 846-851.
http://dx.doi.org/10.1016/j.enconman.2013.08.037

 
 
Top