Neural Modeling of Multivariable Nonlinear Stochastic System. Variable Learning Rate Case

References

[1] K. Kara, “Application des Réseaux de Neurones à l’identification des Systèmes Non Linéaire,” Thesis, Con- stantine University, 1995.

[2] S. R. Chu, R. Shoureshi and N. Tenorio “Neural Networks for System Identification,” IEEE Control System Magazine, Vol. 10, No. 3, 1990, pp. 31-35.

[3] S. Chen and S. A. Billings, “Neural Networks for Non-linear System Modeling and Identification,” Inernational Journal of Control, Vol. 56, No. 2, 1992, pp. 319-346.
doi:10.1080/00207179208934317

[4] N. N. Karabutov, “Structures, Fields and Methods of Iden- tification of Nonlinear Static Systems in the Conditions of Uncertainty,” Intelligent Control and Automation (ICA), Vol. 1, No. 1, 2010, pp. 1-59.

[5] D. C. Psichogios and L. H. Ungar, “Direct and Indirect Model-Based Control Using Artificial Neural Networks,” Industrial and Engineering Chemistry Research, Vol. 30, No. 12, 1991, pp. 25-64.
doi:10.1021/ie00060a009

[6] A. Errachdi, I. Saad and M. Benrejeb, “On-Line Identifycation Method Based on Dynamic Neural Network,” International Review of Automatic Control, Vol. 3, No. 5, 2010, pp. 474-479.

[7] A. M. Subramaniam, A. Manju and M. J. Nigam, “A Novel Stochastic Algorithm Using Pythagorean Means for Minimization,” Intelligent Control and Automation, Vol. 1, No. 1, 2010, pp. 82-89.
doi:10.4236/ica.2010.12009

[8] D. Sha and B. Bajic, “On-Line Adaptive Learning Rate BP Algorithm for MLP and Application to an Identification Problem,” Journal of Applied Computer Science, Vol. 7, No. 2, 1999, pp. 67-82.

[9] A. Errachdi, I. Saad and M. Benrejeb, “Neural Modelling of Multivariable Nonlinear System. Variable Learning Rate Case,” 18th Mediterranean Conference on Control and Automation, Marrakech, 2010, pp. 557-562.

[10] P. Borne, M. Benrejeb and J. Haggege, “Les Réseaux de Neurones. Présentation et Application,” Editions Technip, Paris, 2007.

[11] S. Chabaa, A. Zeroual and J. Antari, “Identification and Prediction of Internet Traffic Using Artificial Neural Net-Works,” Journal of Intelligent Learning Systems & Applications, Vol. 2, No. 1, 2010, pp. 147-155.

[12] M. Korenberg, S. A. Billings, Y. P. Liu and P. J. Mcllroy, “Orthogonal Parameter Estimation Algorithm for Non-linear Stochastic Systems,” International Journal of Control, Vol. 48, No. 1, 1988, pp. 346-354.
doi:10.1080/00207178808906169

[13] A. Errachdi, I. Saad and M. Benrejeb, “Internal Model Control for Nonlinear Time-Varying System Using Neural Networks,” 11th International Conference on Sciences and Techniques of Automatic Control & Computer Engineering, Anaheim, 2010, pp. 1-13.

[14] D. Sha, “A New Neural Networks Based Adaptive Model Predictive Control for Unknown Multiple Variable No-Linear systems,” International Journal of Advanced Mechatronic Systems, Vol. 1, No. 2, 2008, pp. 146-155.
doi:10.1504/IJAMECHS.2008.022013

[15] R. P. Brent, “Fast Training Algorithms for Multilayer Neural Nets,” IEEE Transactions on Neural Networks, Vol. 2, No. 3, 1991, pp. 346-354.
doi:10.1109/72.97911

[16] R. A. Jacobs, “Increase Rates of Convergence through Learning Rate Adaptation,” IEEE Transactions on Neural Networks, Vol. 1, No. 4, 1988, pp. 295-307.

[17] D. C. Park, M. A. El-Sharkawi and R. J. Marks, “An Adaptively Trained Neural Network,” IEEE Transactions on Neural Networks, Vol. 2, No. 3, 1991, pp. 334-345.
doi:10.1109/72.97910

[18] P. Saratchandran, “Dynamic Programming Approach to Optimal Weight Selection in Multilayer Neural Networks,” IEEE Transactions on Neural Networks, Vol. 2, No. 4, 1991, pp. 465-467. doi:10.1109/72.88167