Back
 MSA  Vol.7 No.5 , May 2016
The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications
Abstract:

In recent years, several studies have been performed using nanocellulose as a component in polymeric nanocomposites. The interest in studying cellulose-based nanocomposite is due to the abundance, renewable nature, and outstanding mechanical properties of this nanoparticle. However, obtaining nanocomposites based on nanocellulose, with optimal properties, requires good nanoparticle dispersion in the polymeric matrix. The chemical compatibility between nanofiller and polymer plays a major role in both the dispersion of particles in the matrix and the adhesion between these phases. The aim of this review is to present the fundamental concepts about nanocellulose, such as its structural aspects, production methods and current trends in classification, and the main aspects about cellulose-based nanocomposites, including the progress that has been reached in relation to their compatibilization, production, final properties and potential applications.

Cite this paper: Santos, F. , Iulianelli, G. and Tavares, M. (2016) The Use of Cellulose Nanofillers in Obtaining Polymer Nanocomposites: Properties, Processing, and Applications. Materials Sciences and Applications, 7, 257-294. doi: 10.4236/msa.2016.75026.
References

[1]   Petersson, L., Mathew, A.P. and Oksman, K. (2009) Dispersion and Properties of Cellulose Nanowhiskers and Layered Silicates in Cellulose Acetate Butyrate Nanocomposites. Journal of Applied Polymer Science, 112, 2001-2009.
http://dx.doi.org/10.1002/app.29661

[2]   Feng, L., Zhou, Z., Dufresne, A., Huang, J., Wei, M. and An, L. (2009) Structure and Properties of New Thermoforming Bionanocomposites Based on Chitin Whisker-Graft-Polycaprolactone. Journal of Applied Polymer Science, 112, 2830-2837.
http://dx.doi.org/10.1002/app.29731

[3]   Goetz, L., Mathew, A., Oksman, K., Gatenholm, P. and Ragauskas, A.J. (2009) A Novel Nanocomposite Film Prepared from Crosslinked Cellulosic Whiskers. Carbohydrate Polymers, 75, 85-89.
http://dx.doi.org/10.1016/j.carbpol.2008.06.017

[4]   Mecking, S. (2004) Nature or Petrochemistry?—Biologically Degradable Materials. Angewandte Chemie, International Edition, 43, 1078-1085.
http://dx.doi.org/10.1002/anie.200301655

[5]   Farsani, R.E., Nasab, Z.H., Khalili, S.M.R. and Soleimani, N. (2012) Mechanical Characterization of Nanoclay Reinforced Polypropylene Composites at High Temperature Subjected to Tensile Loads. Advanced Materials Research, 488-489, 567-571.
http://dx.doi.org/10.4028/www.scientific.net/AMR.488-489.567

[6]   Medeiros, V.N., Araújo, E.M., Maia, L.F., Pereira, O.D., Arimateia, R.R. and Paz, R.A. (2008) Desenvolvimento de Nanocompósitos de Poliamida6/Polietileno/Argila Organofílica: O Efeito do Compatibilizante PE-g-MA no Comportamento Reológico da Mistura. Polímeros, 18, 302-306.
http://dx.doi.org/10.1590/S0104-14282008000400008

[7]   Azeredo, H.M.C. (2009) Nanocomposites for Food Packaging Applications. Food Research International, 42, 1240- 1253.
http://dx.doi.org/10.1016/j.foodres.2009.03.019

[8]   Bledzki, A.K. and Gassan, J. (1999) Composites Reinforced with Cellulose Based Fibres. Progress in Polymer Science, 24, 221-274.
http://dx.doi.org/10.1016/S0079-6700(98)00018-5

[9]   Nakagaito, A.N., Iwamoto, S. and Yano, H. (2005) Bacterial Cellulose: The Ultimate Nano-Scalar Cellulose Morphology for the Production of High Strength Composites. Applied Physics A: Materials Science & Processing, 80, 93- 97.
http://dx.doi.org/10.1007/s00339-004-2932-3

[10]   Taylor, N.G. (2008) Cellulose Biosynthesis and Deposition in Higher Plants. New Phytologist, 178, 239-252.
http://dx.doi.org/10.1111/j.1469-8137.2008.02385.x

[11]   Samir, M.A.S.A., Alloin, F. and Dufresne, A. (2005) Review of Recent Research into Cellulosic Whiskers, Their Properties and Their Application in Nanocomposite Field. Biomacromolecules, 6, 612-626.
http://dx.doi.org/10.1021/bm0493685

[12]   Iwatake, A., Nogi, M. and Yano, H. (2008) Cellulose Nanofiber-Reinforced Polylactic Acid. Composites Science and Technology, 68, 2103-2106.
http://dx.doi.org/10.1016/j.compscitech.2008.03.006

[13]   Nakagaito, A.N., Fujimura, A., Sakai, T., Hama, Y. and Yano, H. (2009) Production of Microfibrillated Cellulose (MFC)-Reinforced Polylactic Acid (PLA) Nanocomposites from Sheets Obtained by a Papermaking-Like Process. Composites Science and Technology, 69, 1293-1297.
http://dx.doi.org/10.1016/j.compscitech.2009.03.004

[14]   Lin, N., Chen, G., Huang, J., Dufresne, A. and Chang, P.R. (2009) Structure and Mechanical Properties of Poly (Lactic Acid): A Case of Cellulose Whisker-Graft-Polycaprolactone. Journal of Applied Polymer Science, 113, 3417-3425.
http://dx.doi.org/10.1002/app.30308

[15]   Anglès, M.N. and Dufresne, A. (2000) Plasticized Starch/Tunicin Whiskers Nanocomposites. 1. Structural Analysis. Macromolecules, 33, 8344-8353.
http://dx.doi.org/10.1021/ma0008701

[16]   Huang, Q., Huang, J. and Chang, P.R. (2014) Polycaprolactone Grafting of Cellulose Nanocrystals in Ionic Liquid [BMIM]Cl. Wuhan University Journal of Natural Sciences, 19, 117-122.
http://dx.doi.org/10.1007/s11859-014-0987-3

[17]   Babaee, M., Jonoobi, M., Hamzeh, Y. and Ashori, A. (2015) Biodegradability and Mechanical Properties of Reinforced Starch Nanocomposites Using Cellulose Nanofibers. Carbohydrate Polymers, 132, 1-8.
http://dx.doi.org/10.1016/j.carbpol.2015.06.043

[18]   Santos, F.A. and Tavares, M.I.B. (2015) Development of Biopolymer/Cellulose/Silica Nanostructured Hybrid Materials and Their Characterization by NMR Relaxometry. Polymer Testing, 47, 92-100.
http://dx.doi.org/10.1016/j.polymertesting.2015.08.008

[19]   Rosa, M.F., Medeiros, E.S., Malmonje, J.A., Wood, D.F., Mattoso, L.H.C., Orts, W.J. and Imam, S.H. (2008) Extra??o e Caracteriza??o de Whiskers de Celulose de Fibra de Coco. Resumos do Congresso Brasileiro de Engenharia e Ciência dos Materiais, Porto de Galinhas, 4050-4058.

[20]   Mccarthy, S.P. (2003) Biodegradable Polymers. In: Andrady, A.L., Ed., Plastics and the Environment, John Wiley and Sons, Inc., New York, 359-377.
http://dx.doi.org/10.1002/0471721557.ch9

[21]   Yan, Z., Chen, S., Wang, H., Wang, B., Wang, C. and Jiang, J. (2008) Cellulose Synthesized by Acetobacter xylinum in the Presence of Multi-Walled Carbon Nanotubes. Carbohydrate Research, 343, 73-80.
http://dx.doi.org/10.1016/j.carres.2007.10.024

[22]   Pérez, S. and Mazeau, K. (2005) Conformations, Structures, and Morphologies of Celluloses. In: Dimitriu, S., Ed., Polysaccharides: Structural Diversity and Functional Versatility, Marcel Dekker, Inc., New York, 41-68.

[23]   Chanzy, H. (1990) Aspects of Cellulose Structure. In: Kennedy, J.F., Phillips, G.O. and Williams P.A., Eds., Cellulose Sources and Exploitation: Industrial Utilization, Biotechnology and Physico-Chemical Properties, Ellis Horwood, Inc., New York, 3-12.

[24]   Rosas, K.A. (2008) Biocompósitos de Almidón Termoplástico con Microfibras de Celulosa. Tesís Maestrado, Instituto de investigación en ciencia aplicada y tecnología avanzada del instituto politecnico nacional, Altamira.

[25]   Zhang, Y.H.P., Cui, J.B., Lynd, L.R. and Kuang, L.R. (2006) A Transition from Cellulose Swelling to Cellulose Dissolution by O-Phosphoric Acid: Evidence from Enzymatic Hydrolysis and Supramolecular Structure. Biomacromolecules, 7, 644-648.
http://dx.doi.org/10.1021/bm050799c

[26]   John, M.J. and Thomas, S. (2008) Biofibres and Biocomposites. Carbohydrate Polymers, 71, 343-364.
http://dx.doi.org/10.1016/j.carbpol.2007.05.040

[27]   Moon, R.J., Martini, A., Nairn, J., Simonsen, J. and Youngblood, J. (2011) Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chemical Society Reviews, 40, 3941-3994.
http://dx.doi.org/10.1039/c0cs00108b

[28]   Labafzadeh, S.R. (2015) Cellulose-Based Materials. Academic Dissertation, Faculty of Science of the University of Helsinki, Helsinki.

[29]   Silva, D.J. and D’Almeida, M.L.O. (2009) Nanocristais de Celulose. Revista O Papel, 70, 34-52.
http://www.revistaopapel.org.br/noticia-anexos/1311883542_1b4f1881c01129ce934b0cb4b4ebb9ab_343315426.pdf

[30]   Van de Vyver, S., Geboers, J., Jacobs, P.A. and Sels, B.F. (2011) Recent Advances in the Catalytic Conversion of Cellulose. Chem Cat Chem, 3, 82-94.
http://dx.doi.org/10.1002/cctc.201000302

[31]   Nishiyama, Y., Sugiyama, J., Chanzy, H. and Langan, P. (2003) Crystal Structure and Hydrogen Bonding System in Cellulose 1(Alpha), from Synchrotron X-Ray and Neutron Fiber Diffraction. Journal of the American Chemical Society, 125, 14300-14306.
http://dx.doi.org/10.1021/ja037055w

[32]   Dugan, J.M., Gough, J.E. and Eichhorn, S.J. (2013) Bacterial Cellulose Scaffolds and Cellulose Nanowhiskers for Tissue Engineering. Nanomedicine, 8, 297-298.

[33]   Wuestenberg, T. (2014) Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications. Wiley-VCH, Weinheim.

[34]   Klock, U., Muniz, G.I.B. and Hernandez, J.A. (2005) Química da Madeira. Curitiba: Funda??o de Pesquisas Florestais do Paraná-Fupef, Curitiba.

[35]   Kulshreshtha, A.K. and Dweltz, N.E. (1973) Para Crystalline Lattice Disorder in Cellulose—1. Reappraisal of the Application of the Two-Phase Hypothesis to the Analysis of Powder X-Ray Diffractograms of Native and Hydrolyzed Cellulosic Materials. Journal of Polymer Science Polymer Physics Edition, 11, 487-497.

[36]   Yamamoto, H. and Horii, F. (1993) CPMAS Carbon-13 NMR Analysis of the Crystal Transformation Induced for Valonia Cellulose by Annealing at High Temperatures. Macromolecules, 26, 1313-1317.
http://dx.doi.org/10.1021/ma00058a020

[37]   Sen, S., Martin, J.D. and Argyropoulos, D.S. (2013) Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates. ACS Sustainable Chemistry & Engineering, 1, 858-870.
http://dx.doi.org/10.1021/sc400085a

[38]   Adel, A.M., El-Wahab, Z.H.A., Ibrahim, A.A. and Al-Shemy, M.T. (2011) Characterization of Microcrystalline Cellulose Prepared from Lignocellulosic Materials. Part II: Physicochemical Properties. Carbohydrate Polymers, 83, 676- 687.
http://dx.doi.org/10.1016/j.carbpol.2010.08.039

[39]   Silva, T.A. (2005) Caracteriza??o Química de Polpas Kraft Recicladas Obtidas por Tratamento com Oxigênio e Sistema Lacase-HBT. Disserta??o de Mestrado, Universidade Federal do Paraná, Curitiba.

[40]   Silva, R., Haraguchi, S.K., Muniz, E.C. and Rubira, A.F. (2009) Aplica??es de Fibras Lignocelulósicas na Química de Polímeros e em Compósitos. Química Nova, 32, 661-671.
http://dx.doi.org/10.1590/S0100-40422009000300010

[41]   Monrroy, M., García, J.-R., Mendon?a, R.T., Baeza, J. and Freer, J. (2012) Kraft Pulping of Eucalyptus globulus as a Pretreatment for Bioethanol Production by Simultaneous Saccharification and Fermentation. Journal of the Chilean Chemical Society, 57, 1113-1117.
http://dx.doi.org/10.4067/S0717-97072012000200012

[42]   Hubbe, M.A., Rojas, O.J, Lucia, L.A. and Sain, M. (2008) Cellulosic Nanocomposites: A Review. Bioresources, 3, 929-980.

[43]   Baptista, C., Robert, D. and Duarte, A.P. (2008) Relationship between Lignin Structure and Delignification Degree in Pinus pinaster Kraft Pulps. Bioresource Technology, 99, 2349-2356.
http://dx.doi.org/10.1016/j.biortech.2007.05.012

[44]   Urruzola, I., Robles, E., Serrano, L. and Labidi, J. (2015) Cellulose-Based Graft Copolymer for Toxic Ion and Organic Persistent Pollutants Removal. In: Thakur, V.K., Ed., Cellulose-Based Graft Copolymers: Structure and Chemistry, CRC Press, Boca Raton, 271-281.
http://dx.doi.org/10.1201/b18390-14

[45]   Gibbons, J.H. (1989) Technologies for Reducing Dioxin in the Manufacture of Bleached Wood Pulp: Background Paper Paperback, Washington DC.

[46]   Brasileiro, L.B., Colodette, J.L. and Piló-Veloso, D. (2001) A Utiliza??o de Perácidos na Deslignifica??o e no Branqueamento de Polpas Celulósicas. Química Nova, 24, 819-829.
http://dx.doi.org/10.1590/S0100-40422001000600020

[47]   Vázquez, G., González-álvarez, J., Rodríguez, E.M., Freire, S. and Antorrena, G. (2002) Preliminary Studies on TCF Bleaching of Pinus pinaster Acetosolv Pulps. Bioresource Technology, 81, 141-149.
http://dx.doi.org/10.1016/S0960-8524(01)00115-8

[48]   Huang, G.-L., Shi, J.X. and Langrish, T.A.G.G. (2008) Environmentally Friendly Bagasse Pulping with NH4OH- KOH-AQ. Journal of Cleaner Production, 16, 1287-1293.
http://dx.doi.org/10.1016/j.jclepro.2007.06.011

[49]   Sten, H., Bengt, O.L. and Ulla, S. (1953) The Rate Dominating Reaction of the Delignification of Wood Powder with Sulfite Solutions. Svensk Papperstidning, 56, 645-690.

[50]   Sixta, H. (1998) Comparative Evaluation of Different Concepts of Sulfite Pulping Technology. Das Papier, 52, 239- 249.

[51]   Jer?nimo, L.H., Foelkel, C.E.B. and Frizzo, S.M.B. (2000) Adi??o de Antraquinona na Polpa??o Alcalina de Eucalyptus saligna. Ciência Florestal, 10, 31-37.

[52]   El-Ghany, N.A.A. (2009) Organosolv Pulping of Cotton Linters. Cellulose Chemistry and Technology, 43, 419-426.

[53]   Castellan, A., Perez, D.S., Nourmamode, A., Grelier, S., Terrones, M.G.H., Machado, A.E.H. and Ruggiero, R. (1999) The Improvement of the Bleaching of Peroxyformic Sugar Cane Bagasse Pulp by Photocatalysis and Photosensitization. Journal of Brazilian Chemical Society, 10, 197-202.
http://dx.doi.org/10.1590/S0103-50531999000300007

[54]   Sun, J.X., Sun, X.F., Zhao, H. and Sun, R.C. (2004) Isolation and Characterization of Cellulose from Sugarcane Bagasse. Polymer Degradation and Stability, 84, 331-339.
http://dx.doi.org/10.1016/j.polymdegradstab.2004.02.008

[55]   Son, H.J., Heo, M.S., Kim, Y.G. and Lee, S.J. (2001) Optimization of Fermentation Conditions for the Production of Bacterial Cellulose by a Newly Isolated Acetobacter. Biotechnology and Applied Biochemistry, 33, 1-5.
http://dx.doi.org/10.1042/BA20000065

[56]   Gatenholm, P. and Klemm, D. (2010) Bacterial Nanocellulose as a Renewable Material for Biomedical Applications. MRS Bulletin, 35, 208-213.
http://dx.doi.org/10.1557/mrs2010.653

[57]   Jonas, R. and Farah, L.F. (1998) Production and Application of Microbial Cellulose. Polymer Degradation and Stability, 59, 101-106.
http://dx.doi.org/10.1016/S0141-3910(97)00197-3

[58]   Esa, F., Tasirin, S.M. and Rahman, N.A. (2014) Overview of Bacterial Cellulose Production and Application. Agriculture and Agricultural Science Procedia, 2, 113-119.
http://dx.doi.org/10.1016/j.aaspro.2014.11.017

[59]   Castro, C., Zuluaga, R., Putaux, J.L., Caro, G., Mondragon, I. and Ga?án, P. (2011) Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter swingsii Sp. from Colombian Agroindustrial Wastes. Carbohydrate Polymers, 84, 96-102.
http://dx.doi.org/10.1016/j.carbpol.2010.10.072

[60]   Klemm, D., Schumann, D., Udhardt, U. and Marsch, S. (2001) Bacterial Synthesized Cellulose: Artificial Blood Vessels for Microsurgery. Progress in Polymer Science, 26, 1561-1603.
http://dx.doi.org/10.1016/S0079-6700(01)00021-1

[61]   Nogi, M. and Yano, H. (2008) Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry. Advanced Materials, 20, 1849-1852.
http://dx.doi.org/10.1002/adma.200702559

[62]   Yamanaka, S. and Watanabe, K. (1994) Applications of Bacterial Cellulose. In: Gilbert, D.R., Ed., Cellulosic Polymers: Blends and Composites, Hanser, New York, 207-215.

[63]   Iguchi, M., Yamanaka, S. and Budhiono, A. (2000) Bacterial Cellulose: A Masterpiece of Nature’s Arts. Journal of Materials Science, 35, 261-270.
http://dx.doi.org/10.1023/A:1004775229149

[64]   Kanjanamosit, N., Muangnapohand, C. and Phisalaphong, M. (2010) Biosynthesis and Characterization of Bacteria Cellulose-Alginate Film. Journal of Applied Polymer Science, 115, 1581-1588.
http://dx.doi.org/10.1002/app.31138

[65]   Santos, S.M., Carbajo, J.M. and Villar, J.C. (2013) The Effect of Carbon and Nitrogen Sources on Bacterial Cellulose Production and Properties from Gluconacetobacter sucrofermentans CECT 7291 Focused on Its Use in Degraded Paper Restoration. Bioresources, 8, 3630-3645.
http://dx.doi.org/10.15376/biores.8.3.3630-3645

[66]   Watanabe, K., Tabuchi, M., Morinaga, Y. and Yoshinaga, F. (1998) Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose, 5, 187-200.
http://dx.doi.org/10.1023/A:1009272904582

[67]   Tanskul, S., Amornthatree, K. and Jaturonlak, N. (2013) A New Cellulose-Producing Bacterium, Rhodococcus Sp. MI 2: Screening and Optimization of Culture Conditions. Carbohydrate Polymers, 92, 421-428.
http://dx.doi.org/10.1016/j.carbpol.2012.09.017

[68]   Shi, Q.S., Feng, J., Li, W.R., Zhou, G., Chen, A.M., Ouyang, Y.S. and Chen, Y.B. (2013) Effect of Different Conditions on the Average Degree of Polymerization of Bacterial Cellulose Produced by Gluconacetobacter intermedius BC-41. Cellulose Chemical Technology, 47, 503-508.

[69]   Ishihara, M., Matsunaga, M., Hayashi, N. and Tisler, V. (2002) Utilization of Dxylose as Carbon Source for Production of Bacterial Cellulose. Enzyme and Microbial Technology, 31, 986-991.
http://dx.doi.org/10.1016/S0141-0229(02)00215-6

[70]   Son, H.J., Kim, H.G., Kim, K.K., Kim, H.S., Kim, Y.G. and Lee, S.J. (2003) Increased Production of Bacterial Cellulose by Acetobacter Sp. V6 in Synthetic Media under Shaking Culture Conditions. Bioresource Technology, 86, 215- 219.
http://dx.doi.org/10.1016/S0960-8524(02)00176-1

[71]   Keshk, S. and Sameshima, K. (2005) Evaluation of Different Carbon Sources for Bacterial Cellulose Production. African Journal of Biotechnology, 4, 478-482.

[72]   Mikkelsen, D., Flanagan, B.M., Dykes, G.A. and Gidley, M.J. (2009) Influence of Different Carbon Sources on Bacterial Cellulose Production by Gluconacetobacter xylinus Strain ATCC 53524. Journal of Applied Microbiology, 107, 576-583.
http://dx.doi.org/10.1111/j.1365-2672.2009.04226.x

[73]   Jung, H.I., Jeong, J.H., Lee, O.M., Park, G.T., Kim, K.K., Park, H.C., Lee, S.M., Kim, Y.G. and Son, H.J. (2010) Influence of Glycerol on Production and Structural-Physical Properties of Cellulose from Acetobacter Sp. V6 Cultured in Shake Flasks. Bioresource Technology, 101, 3602-3608.
http://dx.doi.org/10.1016/j.biortech.2009.12.111

[74]   Masaoka, S., Ohe, T. and Sakota, N. (1993) Production of Cellulose from Glucose by Acetobacter xylinum. , 75, 18-22.
http://dx.doi.org/10.1016/0922-338X(93)90171-4

[75]   Oikawa. T., Morino. T. and Ameyama, M. (1995) Production of Cellulose from D-Arbitol by Acetobacter xylinum KU-1. Bioscience, Biotechnology Biochemistry, 59, 1564-1565.
http://dx.doi.org/10.1271/bbb.59.1564

[76]   Keshk, S. and Sameshima, K. (2006) Influence of Lignosulfonate on Crystal Structure and Productivity of Bacterial Cellulose in a Static culture. Enzyme and Microbial Technology, 40, 4-8.
http://dx.doi.org/10.1016/j.enzmictec.2006.07.037

[77]   Gomes, F.P., Silva, N.H.C.S., Trovatti, E., Serafim, L.S., Duarte, M.F., Silvestre, A.J.D., Neto, C.P. and Freire, C.S.R. (2013) Production of Bacterial Cellulose by Gluconacetobacter sacchari Using Dry Olive Mill Residue. Biomass and Bioenergy, 55, 205-211.
http://dx.doi.org/10.1016/j.biombioe.2013.02.004

[78]   Yamamoto, H. and Horii, F. (1994) In Situ Crystallization of Bacterial Cellulose I. Influences of Polymeric Additives, Stirring and Temperature on the Formation Celluloses Iα and Iβ as Revealed by Cross Polarization/Magic Angle Spinning (CP/MAS)13C NMR Spectroscopy. Cellulose, 1, 57-66.
http://dx.doi.org/10.1007/BF00818798

[79]   Tokoh, C., Takabe, K., Fujita, M. and Saiki, H. (1998) Cellulose Synthesized by Acetobacter xylinum in Presence of Acetylglucomannan. Cellulose, 5, 249-261.
http://dx.doi.org/10.1023/A:1009211927183

[80]   Keshk, J. (2014) Bacterial Cellulose Production and Its Industrial Applications. Bioprocessing & Biotechniques, 4, 150.
http://dx.doi.org/10.4172/2155-9821.1000150

[81]   Colvin, J.R. (1980) The Biosynthesis of Cellulose: Plant Biochemistry. Academic Press Inc., New York.
http://dx.doi.org/10.1016/b978-0-12-675403-2.50020-x

[82]   Nakashima, K., Sugiyama, J. and Satoh, N. (2008) A Spectroscopic Assessment of Cellulose and the Molecular Mechanisms of Cellulose Biosynthesis in the Ascidian Ciona intestinalis. Marine Genomics, 1, 9-14.
http://dx.doi.org/10.1016/j.margen.2008.01.001

[83]   Hirose, E., Kimura, S., Itoh, T. and Nishikawa, J. (1999) Tunic Morphology and Cellulosic Components of Pyrosomas, Doliolids, and Salps (Thaliacea, Urochordata). The Biological Buletin, 196, 113-120.
http://dx.doi.org/10.2307/1543173

[84]   Berrill, N.J. (1950) The Tunicata. Ray Society Publications, 133, 1-354.

[85]   Hassanzadeh, M. (2011) Composition and Application Potentials of Scandinavian Tunicates. Master Thesis, KTH Royal Institute of Technology, Stockholm.

[86]   Satoshi, K. and Itoh, T. (2007) Biogenesis and Function of Cellulose in the Tunicates. In: Brown Jr., R.M. and Saxena, I.M., Eds., Cellulose, Molecular and Structural Biology, Springer, New Work, 217-236.

[87]   Kimura, S. and Itoh, T. (2004) Cellulose Synthesizing Terminal Complexes in the Ascidians. Cellulose, 11, 377-383.
http://dx.doi.org/10.1023/B:CELL.0000046414.72903.33

[88]   Daele, Y.V., Revol, J.F., Gaill, F. and Goffinet, G. (1992) Characterization and Supramolecular Architecture of the Cellulose-Protein Fibrils in the Tunic of the Sea Peach (Halocynthia papillosa, Ascidiacea, Urochordata). Biology of the Cell, 76, 87-96.
http://dx.doi.org/10.1016/0248-4900(92)90198-A

[89]   De Leo, G., Patricolo, E. and Lunetta, G.D.A. (1977) Studies on the Fibrous Components of the Test of Ciona intestinalis Linn?us. I. Cellulose-Like Polysaccharide. Acta Zoologica, 58, 135-141.
http://dx.doi.org/10.1111/j.1463-6395.1977.tb00248.x

[90]   Zhang, D., Zhang, Q., Gao, X. and Piao, G. (2013) A Nanocellulose Polypyrrole Composite Based on Tunicate Cellulose. International Journal of Polymer Science, 2013, 1-6.
http://dx.doi.org/10.1155/2013/175609

[91]   Yuan, H., Nishiyama, Y., Wada, M. and Kuga, S. (2006) Surface Acylation of Cellulose Whiskers by Drying Aqueous Emulsion. Biomacromolecules, 7, 696-700.
http://dx.doi.org/10.1021/bm050828j

[92]   Khandelwal, M. and Windle, A.H. (2013) Self-Assembly of Bacterial and Tunicate Cellulose Nanowhiskers. Polymer, 54, 5199-5206.
http://dx.doi.org/10.1016/j.polymer.2013.07.033

[93]   Hirose, E. (2009) Ascidian Tunic Cells: Morphology and Functional Diversity of Free Cells outside the Epidermis. Invertebrate Biology, 128, 83-96.
http://dx.doi.org/10.1111/j.1744-7410.2008.00153.x

[94]   Sugiyama, J., Persson, J. and Chanzy, H. (1991) Combined Infrared and Electron Diffraction Study of the Polymorphism of Native Celluloses. Macromolecules, 24, 2461-2466.
http://dx.doi.org/10.1021/ma00009a050

[95]   Kuga, S., Kim, D.-Y., Nishiyama, Y. and Brown, R.M. (2002) Nanofibrillar Carbon from Native Cellulose. Molecular Crystals and Liquid Crystals, 387, 13-19.
http://dx.doi.org/10.1080/713738864

[96]   Saito, T., Kuramae, R., Wohlert, J., Berglund, L.A. and Isogai, A. (2013) An Ultrastrong Nanofibrillar Biomaterial: The Strength of Single Cellulose Nanofibrils Revealed via Sonication-Induced Fragmentation. Biomacromolecules, 14, 248-253.
http://dx.doi.org/10.1021/bm301674e

[97]   Helbert, W., Nishiyama, Y., Okano, T. and Sugiyama, J. (1998) Molecular Imaging of Halocynthia papillosa Cellulose. Journal of Structural Biology, 124, 42-50.
http://dx.doi.org/10.1006/jsbi.1998.4045

[98]   Kimura, S. and Itoh, T. (1996) New Cellulose Synthesizing Complexes (Terminal Complexes) Involved in Animal Cellulose Biosynthesis in the Tunicate Metandrocarpa uedai. Protoplasma, 194, 151-163.
http://dx.doi.org/10.1007/BF01882023

[99]   Wardrop, A.B. (1970) The Structure and Formation of the Test of Pyura stolonifera (Tunicata). Protoplasma, 70, 73-86.
http://dx.doi.org/10.1007/BF01276843

[100]   Favier, V., Chanzy, H. and Cavaille, J.Y. (1995) Polymer Nanocomposites Reinforced by Cellulose Whiskers. Macromolecules, 28, 6365-6367.
http://dx.doi.org/10.1021/ma00122a053

[101]   Ruiz, M.M., Cavaille, J.Y., Dufresne, A., Graillat, C. and Gerard, J.F. (2001) New Waterborne Epoxy Coatings Based on Cellulose Nanofillers. Macromolecular Symposia, 169, 211-222.
http://dx.doi.org/10.1002/1521-3900(200105)169:1<211::AID-MASY211>3.0.CO;2-H

[102]   Goussé, C., Chanzy, H., Excoffier, G., Soubeyrand, L. and Fleury, E. (2002) Stable Suspensions of Partially Silylated Cellulose Whiskers Dispersed in Organic Solventes. Polymer, 43, 2645-2651.
http://dx.doi.org/10.1016/S0032-3861(02)00051-4

[103]   Schroers, M., Kokil, A. and Weder, C. (2004) Solid Polymer Electrolytes Based on Nanocomposites of Ethylene Oxide-Epichlorohydrin Copolymers and Cellulose Whiskers. Journal of Applied Polymer Science, 93, 2883-2888.
http://dx.doi.org/10.1002/app.20870

[104]   Samir, M.A.S.A., Alloin, F. and Dufresne, A. (2006) High Performance Nanocomposite Polymer Electrolytes. Composite Interfaces, 13, 545-559.
http://dx.doi.org/10.1163/156855406777408656

[105]   Dufresne, A. (2006) Comparing the Mechanical Properties of High Performance Polymer Nanocomposites from Biological Sources. Journal of Nanoscience and Nanotechnology, 6, 322-330.

[106]   Podsiadlo, P., Sui, L., Elkasabi, Y., Burgardt, P., Lee, J., Miryala, A., Kusumaatmaja, W., Carman, M.R., Shtein, M., Kieffer, J., Lahann, J. and Kotov, N.A. (2007) Layerby-Layer Assembled Films of Cellulose Nanowires with Antireflective Properties. Langmuir, 23, 7901-7906.
http://dx.doi.org/10.1021/la700772a

[107]   Van den Berg, O., Capadona, J.R. and Weder, C. (2007) Preparation of Homogeneous Dispersions of Tunicate Cellulose Whiskers in Organic Solvents. Biomacromolecules, 8, 1353-1357.
http://dx.doi.org/10.1021/bm061104q

[108]   Elazzouzi-Hafraoui, S., Nishiyama, Y., Putaux, J.-L., Heux, L., Dubreuil, F. and Rochas, C. (2008) The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules, 9, 57- 65.
http://dx.doi.org/10.1021/bm700769p

[109]   Tang, L. and Weder, C. (2010) Cellulose Whisker/Epoxy Resin Nanocomposites. ACS Applied Materials & Interfaces, 2, 1073-1080.
http://dx.doi.org/10.1021/am900830h

[110]   Pullawan, T., Wilkinsonb, A.N., Zhang, L.N. and Eichhorn, S.J. (2014) Deformation Micromechanics of All-Cellulose Nanocomposites: Comparing Matrix and Reinforcing Components. Carbohydrate Polymers, 100, 31-39.
http://dx.doi.org/10.1016/j.carbpol.2012.12.066

[111]   Zhao, Y. and Li, J. (2014) Excellent Chemical and Material Cellulose from Tunicates: Diversity in Cellulose Production Yield and Chemical and Morphological Structures from Different Tunicate Species. Cellulose, 21, 3427-3441.
http://dx.doi.org/10.1007/s10570-014-0348-6

[112]   Kouzuma, A. and Watanabe, K. (2015) Exploring the Potential of Algae/Bactéria Interactions. Current Opinion in Biotechnology, 33, 125-129.
http://dx.doi.org/10.1016/j.copbio.2015.02.007

[113]   Lee, S.Y., Ahn, J.W., Hwangm, H.J. and Lee, S.B. (2011) Seaweed Biomass Resources in Korea. Korean Society for Biotechnology and Bioengineering Journal, 26, 267-276.
http://dx.doi.org/10.7841/ksbbj.2011.26.4.267

[114]   Mohammad, S.M., Rahman, N.A., Khalil, M.S. and Abdullah, S.R.S. (2014) An Overview of Biocellulose Production Using Acetobacter xylinum Culture. Advances in Biological Research, 8, 307-313.

[115]   Baldan, B., Andolfo, P., Navazio, L., Tolomio, C. and Mariani, P. (2001) Cellulose in Algal Cell Wall: An “in Situ” Localization. European Journal of Histochemistry: EJH, 45, 51-56.
http://dx.doi.org/10.4081/1613

[116]   Frei, E. and Preston, R.D. (1964) Non-Cellulosic Structural Polysaccharides in Algal Cell Walls. II. Association of Xylan and Mannan in Porphyra umbilicalis. Proceedings of the Royal Society B, 160, 314-327.
http://dx.doi.org/10.1098/rspb.1964.0042

[117]   Kloareg, B. and Quatrano, R.S. (1988) Structure of the Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides. Oceanography and Marine Biology: An Annual Review, 26, 259-315.

[118]   Sjostrom, E. (1993) Wood Chemistry—Fundamentals and Applications. Academic Press, San Diego.

[119]   Nicolai, E. and Preston, R.D. (1952) Cell-Wall Studies in the Chlorophyceae. I. A General Survey of Submicroscopic Structure in Filamentous Species. Proceedings of the Royal Society B, 140, 245-274.
http://dx.doi.org/10.1098/rspb.1952.0061

[120]   George, J. and Sabapathi, S.N. (2015) Cellulose Nanocrystals: Synthesis, Functional Properties, and Applications. Journal of Nanotechnology, Science and Applications, 4, 45-54.
http://dx.doi.org/10.2147/NSA.S64386

[121]   Ek, R., Gustafsson, C., Nutt, A., Iversen, T. and Nystr?m, C. (1998) Cellulose Powder from Cladophora Sp. Algae. Journal of Molecular Recognition, 11, 263-265.
http://dx.doi.org/10.1002/(SICI)1099-1352(199812)11:1/6<263::AID-JMR437>3.0.CO;2-G

[122]   Vuong-Roger, Chanzy, H. and Sugiyama, J. (1992) The Cellulose System of Cladophora densa. Biology of the Cell, 75, 264.
http://dx.doi.org/10.1016/0248-4900(92)90174-Y

[123]   Wiencke, C., Gorham, J., Tomos, D. and Davenport, J. (1992) Incomplete Turgor Adjustment in Cladophora rupestris under Fluctuating Salinity Regimes. Estuarine Coastal and Shelf Science, 34, 413-427.
http://dx.doi.org/10.1016/S0272-7714(05)80079-4

[124]   Kim, N.H., Herth, W., Vuong, R. and Chanzy, H. (1996) The Cellulose System in the Cell Wall of Micrasterias. Journal of Structural Biology, 117, 195-203.
http://dx.doi.org/10.1006/jsbi.1996.0083

[125]   Hanley, S.J., Revol, J.F., Godbout, L. and Gray, D.G. (1997) Atomic Force Microscopy and Transmission Electron Microscopy of Cellulose from Micrasterias denticulata; Evidence for a Chiral Helical Microfibril Twist. Cellulose, 4, 209-220.
http://dx.doi.org/10.1023/A:1018483722417

[126]   Revol, J.K. (1982) On the Cross-Sectional Shape of Cellulose Crystallites in Valonia ventricosa. Carbohydrate Polymers, 2, 123-134.
http://dx.doi.org/10.1016/0144-8617(82)90058-3

[127]   Sugiyama, J., Harada, H., Fujiyoshi, Y. and Uyeda, N. (1985) Lattice Images from Ultrathin Sections of Cellulose Microfibrils in the Cell Wall of Valonia macrophysa Kütz. Planta, 166, 161-168.
http://dx.doi.org/10.1007/BF00397343

[128]   Hanley, S.J., Giasson, J., Revol, J.F. and Gray, D.G. (1992) Atomic Force Microscopy of Cellulose Microfibrils: Comparison with Transmission Electron Microscopy. Polymer, 33, 4639-4642.
http://dx.doi.org/10.1016/0032-3861(92)90426-W

[129]   Imai, T. and Sugiyama, J. (1998) Nanodomains of Iα and Iβ Cellulose in Algal Microfibrils. Macromolecules, 31, 6275- 6279.
http://dx.doi.org/10.1021/ma980664h

[130]   Mihranyan, A., Llagostera, A.P., Karmhag, R., Str?mme, M. and Ek, R. (2004) Moisture Sorption by Cellulose Powders of Varying Crystallinity. International Journal of Pharmaceutics, 269, 433-442.
http://dx.doi.org/10.1016/j.ijpharm.2003.09.030

[131]   Mihranyan, A., Edsman, K. and Str?mme, M. (2007) Rheological Properties of Cellulose Hydrogels Prepared from Cladophora Cellulose Powder. Food Hydrocolloids, 21, 267-272.
http://dx.doi.org/10.1016/j.foodhyd.2006.04.003

[132]   Gelin, K., Mihranyan, A., Razaq, A., Nyholm, L. and Str?mme, M. (2009) Potential Controlled Anion Absorption in a Novel High Surface Area Composite of Cladophora Cellulose and Polypyrrole. Electrochimica Acta, 54, 3394-3401.
http://dx.doi.org/10.1016/j.electacta.2009.01.010

[133]   Jmel, M.A., Messaouda, G.B., Marzouki, M.N., Mathlouthi, M. and Smaali, I. (2016) Physico-Chemical Characterization and Enzymatic Functionalization of Enteromorpha Sp. Cellulose. Carbohydrate Polymers, 135, 274-279.
http://dx.doi.org/10.1016/j.carbpol.2015.08.048

[134]   Ishii, D., Saito, T. and Isogai, A. (2011) Viscoelastic Evaluation of Average Length of Cellulose Nanofibres Prepared by TEMPO-Mediated Oxidation. Biomacromolecules, 12, 548-550.
http://dx.doi.org/10.1021/bm1013876

[135]   Andresen, M., Johansson L.S., Tanem, B.S. and Stenius, P. (2006) Properties and Characterization of Hydrophobized Microfibrillated Cellulose. Cellulose, 13, 665-677.
http://dx.doi.org/10.1007/s10570-006-9072-1

[136]   Stenstad, P., Andresen, M., Tanem, B.S. and Stenius, P. (2008) Chemical Surface Modifications of Microfibrillated Cellulose. Cellulose, 15, 35-45.
http://dx.doi.org/10.1007/s10570-007-9143-y

[137]   Siro, I. and Plackett, D. (2010) Microfibrillated Cellulose and New Composite Materials: A Review. Cellulose, 17, 459-494.
http://dx.doi.org/10.1007/s10570-010-9405-y

[138]   Siqueira, G., Bras, J. and Dufresne, A. (2010) Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers, 2, 728-765.
http://dx.doi.org/10.3390/polym2040728

[139]   Eichhorn, S.J, Dufresne, A., Aranguren, M., Marcovich, N.E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., Roman, M., Renneckar, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A.N., Simonsen, J., Bismarck, A., Berglund, L.A. and Peijis, T. (2010) Review: Current International Research into Cellulose Nanofibres and Nanocomposites. Journal of Materials Science, 45, 1-33. http://dx.doi.org/10.1007/s10853-009-3874-0

[140]   Klemm, D., Kramer, F., Moritz, S., Lindstr?m, T., Ankerfors, M., Gray, D. and Dorris, A. (2011) Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition, 50, 5438-5466.
http://dx.doi.org/10.1002/anie.201001273

[141]   Charreau, H., Foresti, M.L. and Vazquez, A. (2013) Nanocellulose Patents Trends: A Comprehensive Review on Patents on Cellulose Nanocrystals, Microfibrillated and Bacterial Cellulose. Recent Patents on Nanotechnology, 7, 56-80.
http://dx.doi.org/10.2174/187221013804484854

[142]   Rodriguez, N.L.G., Thielemans, W. and Dufresne, A. (2006) Sisal Cellulose Whiskers Reinforced Polyvinyl Acetate Nanocomposites. Cellulose, 13, 261-270.
http://dx.doi.org/10.1007/s10570-005-9039-7

[143]   Beck-Candanedo, S., Roman, M. and Gray, D.G. (2005) Effect of Reaction Conditions on the Properties and Behavior of Wood Cellulose Nanocrystal Suspensions. Biomacromolecules, 6, 1048-1054.
http://dx.doi.org/10.1021/bm049300p

[144]   Bai, W., Holbery, J. and Li, K. (2009) A Technique for Production of Nanocrystalline Cellulose with a Narrow Size Distribution. Cellulose, 16, 455-465.
http://dx.doi.org/10.1007/s10570-009-9277-1

[145]   Zhao, Y., Zhang, Y., Lindstr?m, M.E. and Li, J. (2015) Tunicate Cellulose Nanocrystals: Preparation, Neat Films and Nanocomposite Films with Glucomannans. Carbohydrate Polymers, 117, 286-296.
http://dx.doi.org/10.1016/j.carbpol.2014.09.020

[146]   Ljungberg, N., Cavaille, J.Y. and Heux, L. (2006) Nanocomposites of Isotactic Polypropylene Reinforced with Rod-Like Cellulose Whiskers. Polymer, 47, 6285-6292.
http://dx.doi.org/10.1016/j.polymer.2006.07.013

[147]   Bras, J., Hassan, M.L., Bruzesse, C., Hassan, E.A., Nahla, A., El-Wakil, N.A. and Dufresne, A. (2010) Mechanical, Barrier, and Biodegradability Properties of Bagasse Cellulose Whiskers Reinforced Natural Rubber Nanocomposites. Industrial Crops and Products, 32, 627-633.
http://dx.doi.org/10.1016/j.indcrop.2010.07.018

[148]   Bras, J., Viet, D., Bruzzese, C. and Dufresne, A. (2011) Correlation between Stiffness of Sheets Prepared from Cellulose Whiskers and Nanoparticles Dimensions. Carbohydrate Polymers, 84, 211-215.
http://dx.doi.org/10.1016/j.carbpol.2010.11.022

[149]   Hassan, M.L., Moorefield, C.M., Elbatal, H.S., Newkome, G.R., Modarelli, D.A. and Romano, N.C. (2012) Fluorescent Cellulose Nanocrystals via Supramolecular Assembly of Terpyridine-Modified Cellulose Nanocrystals and Terpyridine-Modified Perylene. Materials Science and Engineering: B, 177, 350-358.
http://dx.doi.org/10.1016/j.mseb.2011.12.043

[150]   Ma, Q., Hu, D. and Wang, L. (2016) Preparation and Physical Properties of Tara Gum Film Reinforced with Cellulose Nanocrystals. International Journal of Biological Macromolecules, 86, 606-612.
http://dx.doi.org/10.1016/j.ijbiomac.2016.01.104

[151]   Lima, M.M.S. and Borsali, R. (2004) Cellulose Microcrystals: Structure, Properties, and Applications. Macromolecular Rapid Communications, 25, 771-787.
http://dx.doi.org/10.1002/marc.200300268

[152]   Shim, B.S., Podsiadlo, P., Lilly, D.G., Agarwal, A., Leet, J., Tang, Z., Ho, S., Ingle, P., Paterson, D., Lu, W. and Kotov, N.A. (2007) Nanostructured Thin Films Made by Diewetting Method of Layer-by-Layer Assembly. Nano Letters, 7, 3266-3273.
http://dx.doi.org/10.1021/nl071245d

[153]   Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J. and Imam, S.H. (2010) Cellulose Nanowhiskers from Coconut Husk Fibers: Effect of Preparation Conditions on Their Thermal and Morphological Behavior. Carbohydrate Polymers, 81, 83-92.
http://dx.doi.org/10.1016/j.carbpol.2010.01.059

[154]   Bitinis, N., Verdejo, R., Bras, J., Fortunati, E., Kenny, J.M., Torre, L. and López-Manchado, M.A. (2013) Poly (Lactic Acid)/Natural Rubber/Cellulose Nanocrystal Bionanocomposites Part I. Processing and Morphology. Carbohydrate Polymers, 96, 611-620.
http://dx.doi.org/10.1016/j.carbpol.2013.02.068

[155]   Alves, J.S., Reis, K.C., Menezes, E.G.T., Pereira, F.V. and Pereira, J. (2015) Effect of Cellulose Nanocrystals and Gelatin in Corn Starch Plasticized Films. Carbohydrate Polymers, 115, 215-222.
http://dx.doi.org/10.1016/j.carbpol.2014.08.057

[156]   Bajpai, S.K., Pathak, V. and Soni, B. (2015) Minocycline-Loaded Cellulose Nano Whiskers/Poly (Sodium Acrylate) Composite Hydrogel Films as Wound Dressing. International Journal of Biological Macromolecules, 79, 76-85.
http://dx.doi.org/10.1016/j.ijbiomac.2015.04.060

[157]   El-Saied, H., Basta, A.H. and Gobran, R.H. (2004) Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polymer-Plastics Technology and Engineering, 43, 797-820.
http://dx.doi.org/10.1081/PPT-120038065

[158]   Brown, E.E. and Laborie, M.P.G. (2007) Bloengineering Bacterial Cellulose/Poly (Ethylene Oxide) Nanocomposites. Biomacromolecules, 8, 3074-3081.
http://dx.doi.org/10.1021/bm700448x

[159]   Wan, W.K., Hutter, J.L., Millon, L.E. and Guhados, G. (2006) Bacterial Cellulose and Its Nanocomposites for Biomedical Applications. In: Oksman, K. and Sain, M., Eds., Cellulose Nanocomposites. Processing Characterization, and Properties, ACS Symposium Series, Washington DC, 221-241.
http://dx.doi.org/10.1021/bk-2006-0938.ch015

[160]   Barud, H.S., Barrios, C., Regiani, T., Marques, R.F.C., Verelst, M., Dexpert-Ghys, J., Messaddeq, Y. and Ribeiro, S.J.L. (2008) Self-Supported Silver Nanoparticles Containing Bacterial Cellulose Membranes. Materials Science & Engineering C: Materials for Biological Applications, 28, 515-518.
http://dx.doi.org/10.1016/j.msec.2007.05.001

[161]   Habibi, Y., Lucia, L.A. and Rojas, O.J. (2010) Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews, 110, 3479-3500.
http://dx.doi.org/10.1021/cr900339w

[162]   Mihranyan, A. (2011) Cellulose from Cladophorales Green Algae: From Environmental Problem to High-Tech Composite Materials. Journal of Applied Polymer Science, 119, 2449-2460.
http://dx.doi.org/10.1002/app.32959

[163]   Stelte, W. and Sanadi, A.R. (2009) Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps. Industrial & Engineering Chemical Research, 48, 11211-11219.
http://dx.doi.org/10.1021/ie9011672

[164]   Dufresne, A. (2012) Nanocellulose: From Nature to High Performance Tailored Materials. De Gruyter, Berlin.
http://dx.doi.org/10.1515/9783110254600

[165]   Velásquez-Cock, J., Ga?án, P., Posada, P., Castro, C., Serpa, A., Gómez, C., Putaux, J.-L. and Zuluaga, R. (2016) Influence of Combined Mechanical Treatments on the Morphology and Structure of Cellulose Nanofibrils: Thermal and Mechanical Properties of the Resulting Films. Industrial Crops and Products, 85, 1-10.
http://dx.doi.org/10.1016/j.indcrop.2016.02.036

[166]   Khawas, P. and Deka, S.C. (2016) Isolation and Characterization of Cellulose Nanofibers from Culinary Banana Peel Using High-Intensity Ultrasonication Combined with Chemical Treatment. Carbohydrate Polymers, 137, 608-616.
http://dx.doi.org/10.1016/j.carbpol.2015.11.020

[167]   Yu, H.-Y., Qin, Z.-Y., Liu, L., Yang, X.-G., Zhou, Y. and Yao, J.-M. (2013) Comparison of the Reinforcing Effects for Cellulose Nanocrystals Obtained by Sulfuric and Hydrochloric Acid Hydrolysis on the Mechanical and Thermal Properties of Bacterial Polyester. Composites Science and Technology, 87, 22-28.
http://dx.doi.org/10.1016/j.compscitech.2013.07.024

[168]   Guo, J., Guo, X., Wang, S. and Yin, Y. (2016) Effects of Ultrasonic Treatment during Acid Hydrolysis on the Yield, Particle Size and Structure of Cellulose Nanocrystals. Carbohydrate Polymers, 135, 248-255.
http://dx.doi.org/10.1016/j.carbpol.2015.08.068

[169]   Dong, S., Bortner, M.J. and Roman, M. (2016) Analysis of the Sulfuric Acid Hydrolysis of Wood Pulp for Cellulose Nanocrystal Production: A Central Composite Design Study. Industrial Crops and Products. (In Press)
http://www.sciencedirect.com/science/article/pii/S0926669016300486
http://dx.doi.org/10.1016/j.indcrop.2016.01.048


[170]   Hassan, M.L., Bras, J., Hassan, E.A., Silard, C. and Mauret, E. (2014) Enzyme-Assisted Isolation of Microfibrillated Cellulose from Date Palm Fruit Stalks. Industrial Crops & Products, 55, 102-108.
http://dx.doi.org/10.1016/j.indcrop.2014.01.055

[171]   Cui, S., Zhang, S., Ge, S., Xiong, L. and Sun, Q. (2016) Green Preparation and Characterization of Size-Controlled Nanocrystalline Cellulose via Ultrasonic-Assisted Enzymatic Hydrolysis. Industrial Crops & Products, 83, 346-352.
http://dx.doi.org/10.1016/j.indcrop.2016.01.019

[172]   Krishnamachari, P., Hashaikeh, R., Chiesa, M. and Gad El Rab, K.R.M. (2012) Effects of Acid Hydrolysis Time on Cellulose Nanocrystals Properties: Nanoindentation and Thermogravimetric Studies. Cellulose Chemistry and Technology, 46, 13-18.

[173]   Bondenson, D., Mathew, A.P. and Oskman, K. (2006) Optimization of the Isolation of Nanocrystals from Microcrystalline Cellulose by Acid Hydrolysis. Cellulose, 13, 171-180.
http://dx.doi.org/10.1007/s10570-006-9061-4

[174]   Qua, E.H., Hornsby, P.R., Sharma, H.S.S., Lyons, G. and Mccall, R.D. (2009) Preparation and Characterization of Poly (Vinyl Alcohol) Nanocomposites Made from Cellulose Nanofibers. Journal of Applied Polymer Science, 113, 2238- 2247.
http://dx.doi.org/10.1002/app.30116

[175]   Ten, E., Turtle, J., Bahr, D., Jiang, L. and Wolcott, M. (2010) Thermal and Mechanical Properties of Poly (3-Hydrox- ybutyrate-Co-3-Hydroxyvalerate)/Cellulose Nanowhiskers Composites. Polymer, 51, 2652-2660.
http://dx.doi.org/10.1016/j.polymer.2010.04.007

[176]   Yu, H.-Y., Qin, Z.-Y. and Zhou, Z. (2011) Cellulose Nanocrystals as Green Fillers to Improve Crystallization and Hydrophilic Property of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate). Progress in Natural Science: Materials International, 21, 478-484.
http://dx.doi.org/10.1016/S1002-0071(12)60086-0

[177]   Rueda, L., Saralegui, A., Fernández d’Arlas, B., Zhou, Q., Berglund, L.A., Corcuera, M.A., Mondragon, I. and Eceiza, A. (2013) Cellulose Nanocrystals/Polyurethane Nanocomposites. Study from the Viewpoint of Microphase Separated Structure. Carbohydrate Polymers, 92, 751-757.
http://dx.doi.org/10.1016/j.carbpol.2012.09.093

[178]   Cacciotti, I., Fortunati, E., Puglia, D., Kenny, J.M. and Nanni, F. (2014) Effect of Silver Nanoparticles and Cellulose Nanocrystals on Electrospun Poly (Lactic) Acid Mats: Morphology, Thermal Properties and Mechanical Behavior. Carbohydrate Polymers, 103, 22-31.
http://dx.doi.org/10.1016/j.carbpol.2013.11.052

[179]   Lizundia, E., Fortunati, E., Dominici, F., Vilas, J.L., León, L.M., Armentano, I., Torre, L. and Kenny, J.M. (2016) PLLA-Grafted Cellulose Nanocrystals: Role of the CNC Content and Grafting on the PLA Bionanocomposite Film Properties. Carbohydrate Polymers, 142, 105-113.
http://dx.doi.org/10.1016/j.carbpol.2016.01.041

[180]   Braun, B., Dorgan, J.R. and Chandler, J.P. (2008) Cellulosic Nanowhiskers. Theory and Application of Light Scattering from Polydisperse Spheroids in the Rayleigh-Gans-Debye Regime. Biomacromolecules, 9, 1255-1263.
http://dx.doi.org/10.1021/bm7013137

[181]   Jean, B., Dubreuil, F., Heux, L. and Cousin, F. (2008) Structural Details of Cellulose Nanocrystals/Polyelectrolytes Multilayers Probed by Neutron Reflectivity and AFM. Langmuir, 24, 3452-3458.

[182]   Lizundia, E., Vilas, J.L. and Leóna, L.M. (2015) Crystallization, Structural Relaxation and Thermal Degradation in Poly (L-Lactide)/Cellulose Nanocrystal Renewable Nanocomposites. Carbohydrate Polymers, 123, 256-265.
http://dx.doi.org/10.1016/j.carbpol.2015.01.054

[183]   Herrera, M.A., Mathew, A.P. and Oksman, K. (2014) Gas Permeability and Selectivity of Cellulose Nanocrystals Films (Layers) Deposited by Spin Coating. Carbohydrate Polymers, 112, 494-501.
http://dx.doi.org/10.1016/j.carbpol.2014.06.036

[184]   Yu, H.-Y., Yang, X.-Y., Lu, F.-F., Chen, G.-Y. and Yao, J.-M. (2016) Fabrication of Multifunctional Cellulose Nanocrystals/Poly (Lactic Acid) Nanocomposites with Silver Nanoparticles by Spraying Method. Carbohydrate Polymers, 40, 209-219.
http://dx.doi.org/10.1016/j.carbpol.2015.12.030

[185]   Torres, F.G., Troncoso, O.P., Torres, C. and Grande, C.J. (2013) Cellulose Based Blends, Composites and Nanocomposites. In: Thomas, S., Visakh, P.M. and Mathew, A.P., Eds., Advances in Natural Polymers: Composites and Nanocomposites, Springer-Verlag Berlin Heidelberg, Heidelberg, 21-55.
http://dx.doi.org/10.1007/978-3-642-20940-6_2

[186]   Henriksson, M., Henriksson, G., Berglund, L.A. and Lindstr?m, T. (2007) An Environmentally Friendly Method for Enzyme-Assisted Preparation of Microfibrillated Cellulose (MFC) Nanofibers. European Polymer Journal, 43, 3434- 3441.
http://dx.doi.org/10.1016/j.eurpolymj.2007.05.038

[187]   Paakko, M., Ankerfors, M., Kosonen, H., Nykanen, A., Ahola, S., ?sterberg, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O. and Lindstr?m, T. (2007) Enzymatic Hydrolysis Combined with Mechanical Shearing and High- Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels. Biomacromolecules, 8, 1934-1941.
http://dx.doi.org/10.1021/bm061215p

[188]   Janardhanan, S. and Sain, M.M. (2006) Isolation of Cellulose Microfibrils: An Enzymatic Approach. Bioresources, 1, 176-188.

[189]   Tang, Y., Shen, X., Zhang, J., Guo, D., Kong, F. and Zhang, N. (2015) Extraction of Cellulose Nano-Crystals from Old Corrugated Container Fiber Using Phosphoric Acid and Enzymatic Hydrolysis Followed by Sonication. Carbohydrate Polymers, 125, 360-366.
http://dx.doi.org/10.1016/j.carbpol.2015.02.063

[190]   Turon, X., Rojas, O.J. and Deinhammer, R.S. (2008) Enzymatic Kinetics of Cellulose Hydrolysis: A QCM-D Study. Langmuir, 24, 3880-3887.
http://dx.doi.org/10.1021/la7032753

[191]   Ahola, S., Turon, X., ?sterberg, M., Laine, J. and Rojas, O.J. (2008) Enzymatic Hydrolysis of Native Cellulose Nanofibrils and Other Cellulose Model Films: Effect of Surface Structure. Langmuir, 24, 11592-11599.
http://dx.doi.org/10.1021/la801550j

[192]   Zimmermann, T., Bordeanu, N. and Strub, E. (2010) Properties of Nanofibrillated Cellulose from Different Raw Materials and Its Reinforcement Potential. Carbohydrate Polymers, 79, 1086-1093.
http://dx.doi.org/10.1016/j.carbpol.2009.10.045

[193]   Dufresne, A., Cavaille, J.Y. and Vignon, M.R. (1997) Mechanical Behavior of Sheets Prepared from Sugar Beet Cellulose Microfibrils. Journal of Applied Polymer Science, 64, 1185-1194.
http://dx.doi.org/10.1002/(SICI)1097-4628(19970509)64:6<1185::AID-APP19>3.0.CO;2-V

[194]   Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y. and Pawlak, J.J. (2011) A Comparative Study of Energy Consumption and Physical Properties of Microfibrillated Cellulose Produced by Different Processing Methods. Cellulose, 18, 1097-1111.
http://dx.doi.org/10.1007/s10570-011-9533-z

[195]   Zhu, J.Y., Sabo, R. and Luo, X. (2011) Integrated Production of Nano-Fibrillated Cellulose and Biofuel (Ethanol) by Enzymatic Fractionation of Wood Fibers. Green Chemistry, 13, 1339-1344.
http://dx.doi.org/10.1039/c1gc15103g

[196]   Chakraborty, A., Sain, M. and Kortschot, M. (2005) Cellulose Microfibrils: A Novel Method of Preparation Using High Shear Refining and Cryocrushing. Holzforschung, 59, 102-107.
http://dx.doi.org/10.1515/HF.2005.016

[197]   Chakraborty, A., Sain, M. and Kortschot, M. (2006) Reinforcing Potential of Wood Pulp-Derived Microfibres in a PVA Matrix. Holzforschung, 60, 53-58.
http://dx.doi.org/10.1515/HF.2006.010

[198]   Alemdar, A. and Sain, M. (2008) Isolation and Characterization of Nanofibers from Agricultural Residues—Wheat Straw and Soy Hulls. Bioresource Technology, 99, 1664-1671.
http://dx.doi.org/10.1016/j.biortech.2007.04.029

[199]   Johnson, R.K., Zink-Sharp, A., Renneckar, S.H. and Glasser, W.G. (2009) A New Bio-Based Nanocomposite: Fibrillated TEMPO-Oxidized Celluloses in Hydroxypropylcellulose Matrix. Cellulose, 16, 227-238.
http://dx.doi.org/10.1007/s10570-008-9269-6

[200]   Wang, S. and Cheng, Q. (2009) A Novel Process to Isolate Fibrils from Cellulose Fibers by High-Intensity Ultrasonication, Part 1: Process Optimization. Journal of Applied Polymer Science, 113, 1270-1275.
http://dx.doi.org/10.1002/app.30072

[201]   Tsalagkas, D., Lagaňa, R., Poljan?ek, I., Oven, P. and Csoka, L. (2015) Fabrication of Bacterial Cellulose Thin Films Self-Assembled from Sonochemically Prepared Nanofibrils and Its Characterization. Ultrasonics Sonochemistry, 28, 136-143.
http://dx.doi.org/10.1016/j.ultsonch.2015.07.010

[202]   Ankerfors, M. (2012): Microfibrillated Cellulose: Energy-Efficient Preparation Techniques and Key Properties. Licentiate Thesis, Department of Fibre and Polymer Technology, Royal Institute of Technology, Stockholm.

[203]   Frone, A.N., Panaitescu, D.M. and Donescu, D. (2011) Some Aspects Concerning the Isolation of Cellulose Micro- and Nano-Fibers. UPB Science Bulletin, Series B, 73, 133-152.

[204]   Iwamoto, S., Nakagaito, A.N., Yano, H. and Nogi, M. (2005) Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers. Applied Physics A: Materials Science & Processing, 81, 1109-1112.
http://dx.doi.org/10.1007/s00339-005-3316-z

[205]   Ioelovich, M. and Leykin, A. (2006) Microcrystalline Cellulose: Nano-Structure Formation. Cellulose Chemistry and Technology, 40, 313-317.

[206]   Cheng, Q., Wang, S.Q., Rials, T.G. and Lee, S.H. (2007) Physical and Mechanical Properties of Polyvinyl Alcohol and Polypropylene Composite Materials Reinforced with Fibril Aggregates Isolated from Regenerated Cellulose Fibres. Cellulose, 14, 593-602.
http://dx.doi.org/10.1007/s10570-007-9141-0

[207]   Zuluaga, R., Putaux, J.L., Restrepo, A., Mondragón, I. and Ganan, P. (2007) Cellulose Microfibrils from Banana Farming Residues: Isolation and Characterization. Cellulose, 14, 585-592.
http://dx.doi.org/10.1007/s10570-007-9118-z

[208]   W?gberg, L., Decher, G., Norgren, M., Lindstr?m, T., Ankerfors, M. and Axn?s, K. (2008) The Build-Up of Polyelectrolyte Multilayers of Microfibrillated Cellulose and Cationic Polyelectrolytes. Langmuir, 24, 784-795.
http://dx.doi.org/10.1021/la702481v

[209]   Davoudpour, Y., Hossain, S., Khalil, A., Haafiz, M., Ishak, M., Hassan, A. and Sarker, Z.I. (2015) Optimization of High Pressure Homogenization Parameters for the Isolation of Cellulosic Nanofibers Using Response Surface Methodology. Industrial Crops and Products, 74, 381-387.
http://dx.doi.org/10.1016/j.indcrop.2015.05.029

[210]   Tian, C., Yi, J., Wu, Y., Wu, Q., Qing, Y. and Wang, L. (2016) Preparation of Highly Charged Cellulose Nanofibrils Using High-Pressure Homogenization Coupled with Strong Acid Hydrolysis Pretreatments. Carbohydrate Polymers, 136, 485-492.
http://dx.doi.org/10.1016/j.carbpol.2015.09.055

[211]   Lee, S.-Y., Chun, S.-J., Kang, I.-A. and Park, J.-Y. (2009) Preparation of Cellulose Nanofibrils by High-Pressure Homogenizer and Cellulose-Based Composite Films. Journal of Industrial and Engineering Chemistry, 15, 50-55.
http://dx.doi.org/10.1016/j.jiec.2008.07.008

[212]   Wang, Y., Wei, X., Li, J., Wang, F., Wang, Q. and Kong, L. (2013) Homogeneous Isolation of Nanocellulose from Cotton Cellulose by High Pressure Homogenization Journal of Materials Science and Chemical Engineering, 1, 49-52.

[213]   Keeratiurai, M. and Corredig, M. (2009) Effect of Dynamic High Pressure Homogenization on the Aggregation State of Soy Protein. Journal of Agricultural Food and Chemistry, 57, 3556-3562.
http://dx.doi.org/10.1021/jf803562q

[214]   Ferrer, A., Filpponen, I., Rodríguez, A., Laine, J. and Rojas, O.J. (2012) Valorization of Residual Empty Palm Fruit Bunch Fibers (EPFBF) by Microfluidization: Production of Nanofibrillated Cellulose and EPFBF Nanopaper. Bioresource Technology, 125, 249-255.
http://dx.doi.org/10.1016/j.biortech.2012.08.108

[215]   Lee, S.Y., Chun, S.J., Kang, I.A. and Park, J.Y.D. (2009) Preparation of Cellulose Nanofibers by High-Pressure Homogenizer and Cellulose-Based Composite Films. Journal of Indian Engineering Chemistry, 15, 50-55.

[216]   Spence, K.L., Venditti, R.A., Rojas, O.J., Habibi, Y. and Pawlak, J.J. (2010) The Effect of Chemical Composition on Microfibrillar Cellulose Films from Wood Pulps: Water Interactions and Physical Properties for Packaging Applications. Cellulose, 17, 835-848.
http://dx.doi.org/10.1007/s10570-010-9424-8

[217]   Cheng, Q., Wang, S. and Rials, T.G. (2009) Poly (Vinyl Alcohol) Nanocomposites Reinforced with Cellulose Fibrils Isolated by High Intensity Ultrasonication. Composites: Part A, 40, 218-224.
http://dx.doi.org/10.1016/j.compositesa.2008.11.009

[218]   Chen, P., Yu, H., Liu, Y., Chen, W., Wang, X. and Ouyang, M. (2013) Concentration Effects on the Isolation and Dynamic Rheological Behavior of Cellulose Nanofibers via Ultrasonic Processing. Cellulose, 20, 149-157.
http://dx.doi.org/10.1007/s10570-012-9829-7

[219]   Wang, N., Ding, E. and Cheng, R.S. (2008) Preparation and Liquid Crystalline Properties of Spherical Cellulose Nanocrystals. Langmuir, 24, 5-8.
http://dx.doi.org/10.1021/la702923w

[220]   Bondeson, D., Kvien, I. and Oksman, K. (2006) Strategies for Preparation of Cellulose Whiskers from Microcrystalline Cellulose as Reinforcement in Nanocomposites. In: Oksman, K. and Sain, M., Eds., Cellulose Nanocomposites, American Chemical Society, Washington DC, 10-25.
http://dx.doi.org/10.1021/bk-2006-0938.ch002

[221]   Liu, C.F., Sun, R.C., Qin, M.H., Zhang, A.P., Ren, J.L., Ye, J., Luo, W. and Cao, Z.N. (2008) Succinoylation of Sugarcane Bagasse under Ultrasound Irradiation. Bioresource Technology, 99, 1465-1473.
http://dx.doi.org/10.1016/j.biortech.2007.01.062

[222]   Li, W., Yue, J. and Liu, S. (2012) Preparation of Nanocrystalline Cellulose via Ultrasound and Its Reinforcement Capability for Poly (Vinyl Alcohol) Composites. Ultrasonics Sonochemistry, 19, 479-485.
http://dx.doi.org/10.1016/j.ultsonch.2011.11.007

[223]   Nakagaito, A.N. and Yano, H. (2004) The Effect of Morphological Changes from Pulp Fiber Towards Nano-Scale Fibrillated Cellulose on the Mechanical Properties of High-Strength Plant Fiber Based Composites. Applied Physics A: Materials Science and Processing, 78, 547-552.
http://dx.doi.org/10.1007/s00339-003-2453-5

[224]   Zhou, Y.M., Fu, S.Y., Zheng, L.M. and Zhan, H.Y. (2012) Effect of Nanocellulose Isolation Techniques on the Formation of Reinforced Poly (Vinyl Alcohol) Nanocomposite Films. Express Polymer Letters, 6, 794-804.
http://dx.doi.org/10.3144/expresspolymlett.2012.85

[225]   Silvério, H.A., Flauzino Neto, W.P., Silva, I.S.V., Rosa, J.R., Pasquini, D., Assun??o, R.M.N., Barud, H.S. and Ribeiro, S.J.L. (2014) Mechanical, Thermal, and Barrier Properties of Methylcellulose/Cellulose Nanocrystals Nanocomposites. Polímeros, 24, 683-688.
http://dx.doi.org/10.1590/0104-1428.1691

[226]   Kim, Y., Jung, R., Kim, H.S. and Jin, H.J. (2009) Transparent Nanocomposites Prepared by Incorporating Microbial Nanofibrils into Poly (L-Lactic Acid). Current Applied Physics, 9, S69-S71.
http://dx.doi.org/10.1016/j.cap.2008.08.010

[227]   Bhatnagar, A. and Sain, M. (2005) Processing of Cellulose Nanofiber-Reinforced Composites. Journal of Reinforced Plastics and Composites, 24, 1259-1268.
http://dx.doi.org/10.1177/0731684405049864

[228]   Dogan, N. and Mchugh, T.H. (2007) Effects of Microcrystalline Cellulose on Functional Properties of Hydroxy Propyl Methyl Cellulose Microcomposite Films. Journal of Food Science, 72, E16-E22.
http://dx.doi.org/10.1111/j.1750-3841.2006.00237.x

[229]   Freire, C.S.R., Silvestre, A.J.D., Pascoal Neto, C., Gandini, A., Martin, L. and Mondragon, I. (2008) Composites Based on Acylated Cellulose Fibers and Lowdensity Polyethylene: Effect of the Fiber Content, Degree of Substitution and Fatty Acid Chain Length on Final Properties. Composites Science and Technology, 68, 3358-3364.
http://dx.doi.org/10.1016/j.compscitech.2008.09.008

[230]   Wu, Q., Henriksson, M., Liu, X. and Berglund, L.A. (2007) A High Strength Nanocomposite Based on Microcrystalline Cellulose and Polyurethane. Biomacromolecules, 8, 3688-3692.
http://dx.doi.org/10.1021/bm701061t

[231]   Rahman, M.M., Afrin, S. and Haque, P. (2014) Characterization of Crystalline Cellulose of Jute Reinforced Poly (Vinyl Alcohol) (PVA) Biocomposite Film for Potential Biomedical Applications. Progress in Biomaterials, 3, 23-31.
http://dx.doi.org/10.1007/s40204-014-0023-x

[232]   Kakroodi, A.R., Cheng, S., Sain, M. and Asiri, A. (2014) Mechanical, Thermal, and Morphological Properties of Nanocomposites Based on Polyvinyl Alcohol and Cellulose Nanofiber from Aloe Vera Rind. Journal of Nanomaterials, 2014, Article ID: 903498.

[233]   Zulkifli, N.I., Samat, N., Anuar, H. and Zainuddin, N. (2015) Mechanical Properties and Failure Modes of Recycled Polypropylene/Microcrystalline Cellulose Composites. Material & Design, 69, 114-123.
http://dx.doi.org/10.1016/j.matdes.2014.12.053

[234]   Sonseca, A., Sahuquillo, O., Foster, E.J. and Giménez, E. (2015) Mechanical Properties and Degradation Studies of Poly (Mannitol Sebacate)/Cellulose Nanocrystals Nanocomposites. RSC Advances, 5, 55879-55891.
http://dx.doi.org/10.1039/C5RA06768E

[235]   Helbert, W., Cavaillé, C.Y. and Dufresne, A. (1996) Thermoplastic Nanocomposites Filled with Wheat Straw Cellulose Whiskers. Part I: Processing and Mechanical Behavior. Polymer Composites, 17, 604.
http://dx.doi.org/10.1002/pc.10650

[236]   Oksman, K., Mathew, A. and Sain, M. (2006) The Effect of Morphology and Chemical Characteristics of Cellulose Reinforcements on the Crystallinity of Polylactic Acid. Journal of Applied Polymer Science, 101, 300-310.
http://dx.doi.org/10.1002/app.23346

[237]   Petersson, L., Kvien, I. and Oksman, K. (2007) Structure and Thermal Properties of Polylactic Acid/Cellulose Whiskers Nanocomposite Materials. Composites Science and Technology, 67, 2535-2544.
http://dx.doi.org/10.1016/j.compscitech.2006.12.012

[238]   Siqueira, G., Bras, J., Follain, N., Belbekhouche, S., Marais, S. and Dufresne, A. (2013) Thermal and Mechanical Properties of Bio-Nanocomposites Reinforced by Luffa cylindrica Cellulose Nanocrystals. Carbohydrate Polymers, 91, 711-717.
http://dx.doi.org/10.1016/j.carbpol.2012.08.057

[239]   Paralikar, S.A., Simonsen, J. and Lombardi, J. (2008) Poly (Vinyl Alcohol)/Cellulose Nanocrystal Barrier Membranes. Journal of Membrane Science, 320, 248-258.
http://dx.doi.org/10.1016/j.memsci.2008.04.009

[240]   Sanchez-Garcia, M.D., Gimenez, E. and Lagaron, J.M. (2008) Morphology and Barrier Properties of Solvent Cast Composites of Thermoplastic Biopolymers and Purified Cellulose Fibers. Carbohydrate Polymers, 71, 235-244.
http://dx.doi.org/10.1016/j.carbpol.2007.05.041

[241]   Svagan, A.J., Hedenqvist, M.S. and Berglund, L. (2009) Reduced Water Vapour Sorption in Cellulose Nanocomposites with Starch Matrix. Composites Science and Technology, 69, 500-506.
http://dx.doi.org/10.1016/j.compscitech.2008.11.016

[242]   Khan, A., Khan, R.A., Salmieria, S., Le Tiena, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M.R. and Lacroix, M. (2012) Mechanical and Barrier Properties of Nanocrystalline Cellulose Reinforced Chitosan Based Nanocomposite Films. Carbohydrate Polymers, 90, 1601-1608.
http://dx.doi.org/10.1016/j.carbpol.2012.07.037

[243]   Henriksson, M. and Berglund, L.A. (2007) Structure and Properties of Cellulose Nanocomposite Films Containing Melamine Formaldehyde. Journal of Applied Polymer Science, 106, 2817-2824.
http://dx.doi.org/10.1002/app.26946

[244]   Pracella, M., Haque, M.-U. and Puglia, D. (2014) Morphology and Properties Tuning of PLA/Cellulose Nanocrystals Bio-Nanocomposites by Means of Reactive Functionalization and Blending with PVAc. Polymer, 16, 3720-3728.
http://dx.doi.org/10.1016/j.polymer.2014.06.071

[245]   Zhang, C., Dan, Y., Peng, J., Turng, L.-S., Sabo, R. and Clemons, C. (2014) Thermal and Mechanical Properties of Natural Rubber Composites Reinforced with Cellulose Nanocrystals from Southern Pine. Advances in Polymer Technology, 33, S1.

[246]   Cao, X., Dong, H. and Li, C.M. (2007) New Nanocomposite Materials Reinforced with Flax Cellulose Nanocrystals in Waterborne Polyurethane. Biomacromolecules, 8, 899-904.
http://dx.doi.org/10.1021/bm0610368

[247]   Gong, G., Pyo, J., Mathew, A.P. and Oksman, K. (2011) Tensile Behavior, Morphology and Viscoelastic Analysis of Cellulose Nanofiber-Reinforced (CNF) Polyvinyl Acetate (PVAc). Composites Part A: Applied Science and Manufacturing, 42, 1275-1282.
http://dx.doi.org/10.1016/j.compositesa.2011.05.009

[248]   Samir, M.A.S.A., Alloin, F., Sanchez, J.-Y. and Dufresne, A. (2004) Cellulose Nanocrystals Reinforced Poly (Oxyethylene). Polymer, 45, 4149-4157.
http://dx.doi.org/10.1016/j.polymer.2004.03.094

[249]   Jordan, J., Jacob, K.I., Tannenbaum, R., Sharaf, M.A. and Jasiuk, I. (2005) Experimental Trends in Polymer Nanocomposites: A Review. Materials Science and Engineering A, 393, 1-11.
http://dx.doi.org/10.1016/j.msea.2004.09.044

[250]   Zimmermann, T., P?hler, E. and Geiger, T. (2004) Cellulose Fibrils for Polymer Reinforcement. Advanced Engineering Materials, 6, 754-761.
http://dx.doi.org/10.1002/adem.200400097

[251]   Shi, Q., Zhou, C., Yue, Y., Guo, W., Wu, Y. and Wu, Q. (2012) Mechanical Properties and in Vitro Degradation of Electrospun Bio-Nanocomposite Mats from PLA and Cellulose Nanocrystals. Carbohydrate Polymers, 90, 301-308.
http://dx.doi.org/10.1016/j.carbpol.2012.05.042

[252]   Oksman, K., Mathew, A.P., Bondeson, D. and Kvien, I. (2006) Manufacturing Process of Cellulose Whiskers/Polylactic Acid Nanocomposites. Composites Science and Technology, 66, 2776-2784.
http://dx.doi.org/10.1016/j.compscitech.2006.03.002

[253]   Visakh, P.M., Thomas, S., Oksman, K. and Mathew, A.P. (2012) Crosslinked Natural Rubber Nanocomposites Reinforced with Cellulose Whiskers Isolated from Bamboo Waste: Processing and Mechanical/Thermal Properties. Composites Part A: Applied Science and Manufacturing, 43, 735-741.
http://dx.doi.org/10.1016/j.compositesa.2011.12.015

[254]   Alemdar, A. and Sain, M. (2008) Biocomposites from Wheat Straw Nanofibers: Morphology, Thermal and Mechanical Properties. Composites Science and Technology, 68, 557-565.
http://dx.doi.org/10.1016/j.compscitech.2007.05.044

[255]   Mathew, A.P. and Dufresne, A. (2002) Morphological Investigation of Nanocomposites from Sorbitol Plasticized Starch and Tunicin Whiskers. Biomacromolecules, 3, 609-617.
http://dx.doi.org/10.1021/bm0101769

[256]   Garcia de Rodrigues, N.L., Thielemans, W. and Dufresne, A. (2006) Sisal Cellulose Whiskers Reinforce Polyvinyl Acetate Nanocomposites. Cellulose, 13, 261-270.

[257]   Choy, Y. and Simonsen, J. (2006) Cellulose Nanocrystal-Filled Carboxymethyl Cellulose Nanocomposites. Journal of Nanoscience and Nanotechnology, 6, 633-639.
http://dx.doi.org/10.1166/jnn.2006.132

[258]   Lu, J., Wang, T. and Drzal, L.T. (2008) Preparation and Properties of Microfibrillated Cellulose Polyvinyl Alcohol Composite Materials. Composites Part A: Applied Science and Manufacturing, 39, 738-746.
http://dx.doi.org/10.1016/j.compositesa.2008.02.003

[259]   Jiang, L., Morelius, E., Zhang, J., Wolcott, M. and Holbery, J. (2008) Study of the Poly (3-Hydroxybutyrate-co-3-Hy- droxyvalerate)/Cellulose Nanowhisker Composites Prepared by Solution Casting and Melt Processing. Journal of Composite Materials, 42, 2629-2645.
http://dx.doi.org/10.1177/0021998308096327

[260]   Siqueira, G., Bras, J. and Dufresne, A. (2009) Cellulose Whiskers versus Microfibrils: Influence of the Nature of the Nanoparticle and Its Surface Functionalization on the Thermal and Mechanical Properties of Nanocomposites. Biomacromolecules, 10, 425-432.
http://dx.doi.org/10.1021/bm801193d

[261]   Srithep, Y., Ellingham, T., Peng, J., Sabo, R., Clemons, C., Turng, L.-S. and Pilla, S. (2013) Melt Compounding of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Nanofibrillated Cellulose Nanocomposites. Polymer Degradation and Stability, 98, 1439-1449.
http://dx.doi.org/10.1016/j.polymdegradstab.2013.05.006

[262]   Fortunati, E., Puglia, D., Monti, M., Santulli, C., Maniruzzaman, M. and Kenny, J.M. (2013) Cellulose Nanocrystals Extracted from Okra Fibers in PVA Nanocomposites. Journal of Applied Polymer Science, 128, 3220-3230.
http://dx.doi.org/10.1002/app.38524

[263]   Halász, K. and Csóka, L. (2013) Plasticized Biodegradable Poly (Lactic Acid) Based Composites Containing Cellulose in Micro- and Nanosized. Journal of Engineering, 2013, Article ID: 329379.
http://dx.doi.org/10.1155/2013/329379

[264]   Wang, X., Sun, H., Bai, H. and Zhang, L.-P. (2014) Thermal, Mechanical, and Degradation Properties of Nanocomposites Prepared Using Lignin-Cellulose Nanofibers and Poly (Lactic Acid). Bioresources, 9, 3211-3224.
http://dx.doi.org/10.15376/biores.9.2.3211-3224

[265]   Rahman, M.M., Afrin, S., Haque, P., Islam, M., Islam, M.S. and Gafur, A. (2014) Preparation and Characterization of Jute Cellulose Crystals-Reinforced Poly (Lactic Acid) Biocomposite for Biomedical Applications. International Journal of Chemical Engineering, 2014, Article ID: 842147.
http://dx.doi.org/10.1155/2014/842147

[266]   Mi, H.-Y., Jing, X., Peng, J., Salick, M.R., Peng, X.-F. and Turng, L.-S. (2014) Poly (ε-Caprolactone) (PCL)/Cellulose Nano-Crystal (CNC) Nanocomposites and Foams. Cellulose, 21, 2727-2741.
http://dx.doi.org/10.1007/s10570-014-0327-y

[267]   Santos, F.A. and Tavares, M.I.B. (2014) Development and Characterization of Hybrid Materials Based on Biodegradable PLA Matrix, Microcrystalline Cellulose and Organophilic Silica. Polímeros, 24, 561-566.
http://dx.doi.org/10.1590/0104-1428.1653

[268]   Petersson, L. and Oksman, K. (2006) Biopolymer Based Nanocomposites: Comparing Layered Silicates and Microcrystalline Cellulose as Nanoreinforcement. Composites Science and Technology, 66, 2187-2196.
http://dx.doi.org/10.1016/j.compscitech.2005.12.010

[269]   Angellier, H., Molina-Boisseau, S., Lebrun, L. and Dufresne, A. (2005) Processing and Structural Properties of Waxy Maize Starch Nanocrystals Reinforced Natural Rubber. Macromolecules, 39, 3783-3792.
http://dx.doi.org/10.1021/ma050054z

[270]   Lagaron, J.M., Catalá, R. and Gavara, R. (2004) Structural Characteristics Defining High Barrier Polymeric Materials. Journal of Composite Materials, 20, 1-7.
http://dx.doi.org/10.1179/026708304225010442

[271]   Dufresne, A., Dupeyre, D. and Vignon, M.R. (2000) Cellulose Microfibrils from Potato Tuber Cells: Processing and Characterization of Starch-Cellulose Microfibril Composites. Journal of Applied Polymer Science, 76, 2080-2092.
http://dx.doi.org/10.1002/(SICI)1097-4628(20000628)76:14<2080::AID-APP12>3.0.CO;2-U

[272]   Lu, Y., Weng, L. and Cao, X. (2005) Biocomposites of Plasticized Starch Reinforced with Cellulose Crystallites from Cottonseed Linter. Macromolecular Bioscience, 5, 1101-1107.
http://dx.doi.org/10.1002/mabi.200500094

[273]   Plackett, D., Anturi, H., Hedenqvist, M., Ankerfors, M., Gallstedt, M., Lindstrom, T. and Siró, I. (2010) Physical Properties and Morphology of Films Prepared from Microfibrillated Cellulose and Microfibrillated Cellulose in Combination with Amylopectin. Journal of Applied Polymer Science, 117, 3601-3609.

[274]   Lange, J. and Wyser, Y. (2004) Recent Innovations in Barrier Technologies for Plastic Packaging: A Review. Packaging Technology and Science, 16, 149-158.
http://dx.doi.org/10.1002/pts.621

[275]   Bondeson, D. and Oksman, K. (2007) Polylactic Acid/Cellulose Whisker Nanocomposites Modified by Polyvinyl Alcohol. Composites Part A: Applied Science and Manufacturing, 38, 2486-2492.
http://dx.doi.org/10.1016/j.compositesa.2007.08.001

[276]   Mohanty, A.K., Misra, M. and Drzal, L.T. (2001) Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposites: An Overview. Composite Interfaces, 8, 313-342.
http://dx.doi.org/10.1163/156855401753255422

[277]   Raquez, J.-M., Murema, Y., Goffin, A.-L., Habibi, Y., Ruelle, B., Debuyl, F. and Dubois, P. (2012) Surface-Modifica- tion of Cellulose Nanowhiskers and Their Use as Nanoreinforcers into Polylactide: A Sustainably-Integrated Approach. Composites Science and Technology, 72, 544-549.
http://dx.doi.org/10.1016/j.compscitech.2011.11.017

[278]   Ljungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L. and Cavaille, J.Y. (2005) New Nanocomposite Materials Reinforced with Cellulose Whiskers in Atactic Polypropylene: Effect of Surface and Dispersion Characteristics. Biomacromolecules, 6, 2732-2739.
http://dx.doi.org/10.1021/bm050222v

[279]   Peng, B., Han, X., Liu, H., Berry, R.C. and Tam, K.C. (2013) Interactions between Surfactants and Polymer-Grafted Nanocrystalline Celulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 421, 142-149.
http://dx.doi.org/10.1016/j.colsurfa.2012.12.059

[280]   Emami, Z., Meng, Q., Pircheraghi, G. and Manas-Zloczower, I. (2015) Use of Surfactants in Cellulose Nanowhisker/Epoxy Nanocomposites: Effect on Filler Dispersion and System Properties. Cellulose, 22, 3161-3176.
http://dx.doi.org/10.1007/s10570-015-0728-6

[281]   Goffin, A.-L., Raquez, J.-M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A. and Dubois, P.H. (2011) Poly (?- Caprolactone) Based Nanocomposites Reinforced by Surface-Grafted Cellulose Nanowhiskers via Extrusion Pro- cessing: Morphology, Rheology, and Thermo-Mechanical Properties. Polymer, 52, 1532-1538.
http://dx.doi.org/10.1016/j.polymer.2011.02.004

[282]   Yu, H.-Y. and Qin, Z.-Y. (2014) Surface Grafting of Cellulose Nanocrystals with Poly (3-Hydroxybutyrate-Co-3-Hy- droxyvalerate). Carbohydrate Polymers, 101, 471-478.
http://dx.doi.org/10.1016/j.carbpol.2013.09.048

[283]   Bunsomsit, K., Magaraphan, K., O’rear, E.A. and Grady, B.P. (2002) Polypyrrole-Coated Natural Rubber Latex by Admicellar Polymerization. Colloid and Polymer Science, 280, 509-516.
http://dx.doi.org/10.1007/s00396-001-0639-y

[284]   Lekpittaya, P., Yanumet, N., Grady, B.P. and O’rear, E.A. (2004) Resistivity of Conductive Polymer-Coated Fabric. Journal of Applied Polymer Science, 92, 2629-2636.
http://dx.doi.org/10.1002/app.20270

[285]   Tragoonwichian, S., O’rear, E.A. and Yanumet, N. (2008) Admicellar Polymerization of 2-Hydroxy-4-Acryloylox- ybenzophenone: The Production of UV-Protective Cotton. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 329, 87-94.
http://dx.doi.org/10.1016/j.colsurfa.2008.06.051

[286]   Sangthong, S., Pongprayoon, T. and Yanumet, N. (2009) Mechanical Property Improvement of Unsaturated Polyester Composite Reinforced with Admicellar-Treated Sisal Fibers. Composites Part A: Applied Science and Manufacturing, 40, 678-694.
http://dx.doi.org/10.1016/j.compositesa.2008.12.004

[287]   Hanumansetty, S., Maity, J., Foster, R. and O’Rear, E.A. (2012) Stain Resistance of Cotton Fabrics before and after Finishing with Admicellar Polymerization. Applied Sciences, 2, 192-200.
http://dx.doi.org/10.3390/app2010192

[288]   Pongprayoon, T., Yanumet, N. and Sangthong, S. (2008) Surface Behavior and Film Formation Analysis of Sisal Fiber Coated by Poly (Methyl Methacrylate) Ultrathin Film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 320, 130-137.
http://dx.doi.org/10.1016/j.colsurfa.2008.01.050

[289]   Boufi, S. and Gandini, A. (2001) Formation of Polymeric Films on Cellulosic Surfaces by Admicellar Polymerization. Cellulose, 8, 303-312.
http://dx.doi.org/10.1023/A:1015137116216

[290]   Yaun, W.L., O’rear, E.A., Grady, B.P. and Glatzhofer, D.T. (2002) Nanometer-Thick Poly (Pyrrole) Films Formed by Admicellar Polymerization under Conditions of Depleting Adsolubilization. Langmuir, 18, 3343-3351.
http://dx.doi.org/10.1021/la011349i

[291]   Lai, C.L., Harwell, J.H., O’rear, E.A., komotsuzaki, S., Arai, J., Nakakawaii, T. and Ito, Y. (1995) Formation of Poly (Tetrafluoroethylene) Thin Films on Alumina by Admicelar Polymerization. Langmuir, 11, 905-911.
http://dx.doi.org/10.1021/la00003a038

[292]   Oksman, K., Jonoobi, M., Hietala, M. and Vargas, N.H. (2013) Cellulose Nanocomposites Processing Using Extrusion. In: Postek, M.T., Moon, R.J., Rudie, A. and Bilodeau, M., Eds., Production and Applications of Cellulose Nanomaterials, TAPPI Press, Atlanta, 99-102.

[293]   Rojas, O.J., Montero, G.A. and Habibi, Y. (2009) Electrospun Nanocomposites from Polystyrene Loaded with Cellulose Nanowhiskers. Journal of Applied Polymer Science, 113, 927-935.
http://dx.doi.org/10.1002/app.30011

[294]   Magalhaes, W.L.E., Cao, X.D. and Lucia, L.A. (2009) Cellulose Nanocrystals/Cellulose Core-In-Shell Nanocomposite Assemblies. Langmuir, 25, 13250-13257.
http://dx.doi.org/10.1021/la901928j

[295]   Lu, P. and Hsieh, Y.L. (2009) Cellulose Nanocrystal-Filled Poly (Acrylic Acid) Nanocomposite Fibrous Membranes. Nanotechnology, 20, Article ID: 415604.
http://dx.doi.org/10.1088/0957-4484/20/41/415604

[296]   Peresin, M., Youssef, H., Zoppe, J., Pawlak, J.J. and Orlando, R. (2010) Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization. Biomacromolecules, 11, 674-681.
http://dx.doi.org/10.1021/bm901254n

[297]   Olsson, R.T., Kraemer, R., Lopez-Rubio, A., Torres-Giner, S., Ocio, M.J. and Lagaron, J.M. (2010) Extraction of Microfibrils from Bacterial Cellulose Networks for Electrospinning of Anisotropic Biohybrid Fiber Yarns. Macromolecules, 43, 4201-4209.
http://dx.doi.org/10.1021/ma100217q

[298]   Zoppe, O., Habibi, Y., Rojas, O.J., Venditti, R.A., Johansson, L.-S., Efimenko, K., Osterberg, M. and Laine, J. (2011) Poly (N-Isopropylacrylamide) Brushes Grafted from Cellulose Nanocrystals via Surface-Initiated Single-Electron Transfer Living Radical Polymerization. Biomacromolecules, 11, 2683-2691.
http://dx.doi.org/10.1021/bm100719d

[299]   Malainine, M.E., Mahrouz, M. and Dufresne, A. (2005) Thermoplastic Nanocomposites Based on Cellulose Microfibrils from Opuntia Ficus-Indica Parenchyma Cell. Composites Science and Technology, 65, 1520-1526.
http://dx.doi.org/10.1016/j.compscitech.2005.01.003

[300]   Orts, W.J., Shey, J., Imam, S.H., Glenn, G.M., Guttman, M.E. and Revol, J.F. (2005) Application of Cellulose Microfibrils in Polymer Nanocomposites. Journal of Polymers and the Environment, 13, 301-306.
http://dx.doi.org/10.1007/s10924-005-5514-3

[301]   Roman, M. and Winter, W.T. (2006) Cellulose Nanocrystals for Thermoplastic Reinforcement: Effect of Filler Surface Chemistry on Composite Properties. In: Oksman, K. and Sain, M., EdS., Cellulose Nanocomposites. Processing Characterization, and Properties, ACS Symposium Series, Washington DC, 99-113.
http://dx.doi.org/10.1021/bk-2006-0938.ch008

[302]   Samir, M.A.S.A., Alloin, F., Sanchez, J.-Y. and Dufresne, A. (2004) Crosslinked Nanocomposite Polymer Electrolytes Reinforced with Cellulose Whiskers. Macromolecules, 37, 4839-4844.
http://dx.doi.org/10.1021/ma049504y

[303]   Dufresne, A. (2010) Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals. Molecules, 15, 4111-4128.
http://dx.doi.org/10.3390/molecules15064111

[304]   Yousefi, H., Faezipour, M., Nishino, T., Shakeri, A. and Ebrahimi, G.(2011) All-Cellulose Composite and Nanocomposite Made from Partially Dissolved Micro- and Nanofibers of Canola Straw. Polymer Journal, 43, 559-564.
http://dx.doi.org/10.1038/pj.2011.31

[305]   Nishino, T., Matsuda, I. and Hirao, K. (2004) All-Cellulose Composite. Macromolecules, 37, 7683-7687.
http://dx.doi.org/10.1021/ma049300h

[306]   Soykeabkaew, N., Arimoto, N., Nishino, T. and Peijs, T. (2008) All-Cellulose Composites by Surface Selective Dissolution of Aligned Ligno-Cellulosic Fibres. Composites Science and Technology, 68, 2201-2207.
http://dx.doi.org/10.1016/j.compscitech.2008.03.023

[307]   Gindl, W. and Keckes, J. (2005) All-Cellulose Nanocomposite. Polymer, 46, 10221-10225.
http://dx.doi.org/10.1016/j.polymer.2005.08.040

[308]   Nishino, T. and Arimoto, N. (2007) All-Cellulose Composite by Selective Dissolving of Fiber Surface. Biomacromolecules, 8, 2712-2716. http://dx.doi.org/10.1021/bm0703416

[309]   Duchemin, B.J.C., Mathew, A. and Oksman, K. (2009) All-Cellulose Composites by Partial Dissolution in the Ionic Liquid 1-Butyl-3-Methylimidazolium Chloride. Composites, 40, 2031-2037.
http://dx.doi.org/10.1016/j.compositesa.2009.09.013

[310]   Soykeabkaew, N., Chandeep, S., Nishino, T. and Peijs, T. (2009) All-Cellulose Nanocomposites by Surface Selective Dissolution of Bacterial Cellulose. Cellulose, 16, 435-444.
http://dx.doi.org/10.1007/s10570-009-9285-1

[311]   Qi, H., Cai, J., Zhang, L. and Kuga, S. (2009) Properties of Films Composed of Cellulose Nanowhiskers and a Cellulose Matrix Regenerated from Alkali/Urea Solution. Biomacromolecules, 10, 1597-1602.
http://dx.doi.org/10.1021/bm9001975

[312]   Gindl, W., Schoberl, T. and Keckes, J. (2006) Structure and Properties of a Pulp Fibre-Reinforced Composite with Regenerated Cellulose Matrix. Applied Physics A, 83, 19-22. http://dx.doi.org/10.1007/s00339-005-3451-6

[313]   Chazeau, L., Cavaille, J.Y., Canova, G., Dendievel, R. and Boutherin, B. (1999) Viscoelastic Properties of Plasticized PVC Reinforced with Cellulose Whiskers. Journal of Applied Polymer Science, 71, 1797-1808.
http://dx.doi.org/10.1002/(SICI)1097-4628(19990314)71:11<1797::AID-APP9>3.0.CO;2-E

[314]   Qiu, W.L., Endo, T. and Hirotsu, T. (2004) Interfacial Interactions of a Novel Mechanochemical Composite of Cellulose with Maleated Polypropylene. Journal Applied Polymer Science, 94, 1326-1335.
http://dx.doi.org/10.1002/app.21123

[315]   Chauve, G., Heux, L., Arouini, R. and Mazeau, K. (2005) Cellulose Poly (Ethylene-Covinyl Acetate) Nanocomposites Studied by Molecular Modeling and Mechanical Spectroscopy. Biomacromolecules, 6, 2025-2031.
http://dx.doi.org/10.1021/bm0501205

[316]   Kuan, C.F., Ma, C.C.M., Hsu-Chiang, K.A., Wu, H.L. and Liao, Y.M. (2006) Preparation and Characterization of the Novel Water-Cross Linked Cellulose Reinforced Poly (Butylene Succinate) Composites. Composites Science Technology, 66, 2231-2241.
http://dx.doi.org/10.1016/j.compscitech.2005.12.011

[317]   Bondeson, D. and Oksman, K. (2007) Dispersion and Characteristics of Surfactant Modified Cellulose Whiskers Nanocomposites. Composite Interfaces, 14, 617-630.
http://dx.doi.org/10.1163/156855407782106519

[318]   Soulestin, J., Quievy, N., Sclavons, M. and Devaux, J. (2007) Polyolefins-Biofibre Composites: A New Way for an Industrial Production. Polymer Engineering & Science, 47, 467-476.
http://dx.doi.org/10.1002/pen.20706

[319]   Abdul Khalil, H.P.S., Bhat, A.H., Abu Bakar, A., Tahir, P.Md., Zaidul, I.S.M. and Jawaid, M. (2014) Cellulosic Nanocomposites from Natural Fibers for Medical Applications: A Review. In: Pandey, J.K., Takagi, H., Nakagaito, A.N. and Kim, H.-J., Eds., Handbook of Polymer Nanocomposites. Processing, Performance and Application, Vol. C: Polymer Nanocomposites of Cellulose Nanoparticles, Springer Berlin Heidelberg, Heidelberg, 475-511.

[320]   Hajji, P., Cavaille, J.Y., Favier, V., Gauthier, C. and Vigier, G. (1996) Tensile Behavior of Nanocomposites from Latex and Cellulose Whiskers. Polymer Composites, 17, 612-619.

[321]   Pereda, M., Kissi, N.E. and Dufresne, A. (2014) Extrusion of Polysaccharide Nanocrystal Reinforced Polymer Nanocomposites through Compatibilization with Poly (Ethylene Oxide). ACS Applied Materials & Interfaces, 6, 9365-9375.
http://dx.doi.org/10.1021/am501755p

[322]   Takamura, M., Nakamura, T., Takahashi, T. and Koyama, K. (2008) Effect of Type of Peroxide on Cross-Linking of Poly (L-Lactide). Polymer Degradation and Stability, 93, 1909-1916.
http://dx.doi.org/10.1016/j.polymdegradstab.2008.07.001

[323]   Ma, P., Cai, X., Zhang, Y., Wang, S., Dong, W., Chen, M. and Lemstra, P.J. (2014) In-Situ Compatibilization of Poly (Lactic Acid) and Poly (Butylene Adipate-Co-Terephthalate) Blends by Using Dicumyl Peroxide as a Free-Radical Initiator. Polymer Degradation and Stability, 102, 145-151.
http://dx.doi.org/10.1016/j.polymdegradstab.2014.01.025

[324]   Wei, L., McDonald, A.G. and Stark, N.M. (2015) Grafting of Bacterial Polyhydroxybutyrate (PHB) onto Cellulose via in Situ Reactive Extrusion with Dicumyl Peroxide. Biomacromolecules, 16, 1040-1049.

[325]   Dhar, P., Tarafder, D., Kumar, A. and Katiyar, V. (2016) Thermally Recyclable Polylactic Acid/Cellulose Nanocrystal Films through Reactive Extrusion Process. Polymer, 87, 268-282.
http://dx.doi.org/10.1016/j.polymer.2016.02.004

[326]   Frenot, A. and Chronakis, I.S. (2003) Polymer Nanofibers Assembled by Electrospinning. Current Opinion in Colloid and Interface Science, 8, 64-75.
http://dx.doi.org/10.1016/S1359-0294(03)00004-9

[327]   Park, I., Kang, M., Kim, H.S. and Jin, H.J. (2007) Electrospinning of Poly (Ethylene Oxide) with Bacterial Cellulose Whiskers. Macromolecular Symposia, 249, 289-294.
http://dx.doi.org/10.1002/masy.200750347

[328]   Zoppe, J.O., Peresin, M.S., Habibi, Y., Venditti, R.A. and Rojas, O.J. (2009) Reinforcing Poly (ε-Caprolactone) Nanofibers with Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 1, 1996-2004.
http://dx.doi.org/10.1021/am9003705

[329]   Favier, V., Canova, G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A. and Gauthier, C. (1995) Nanocomposite Materials from Latex and Cellulose Whiskers. Polymers Advanced Technologies, 6, 351-355.
http://dx.doi.org/10.1002/pat.1995.220060514

[330]   Samir, M.A.S.A, Alloin, F., Gorecki, W., Sanchez, J.-Y. and Dufresne, A. (2004) Nanocomposite Polymer Electrolytes Based on Poly-(Oxyethylene) and Cellulose Nanocrystals. The Journal of Physical Chemistry B, 108, 10845-10852.
http://dx.doi.org/10.1021/jp0494483

[331]   Samir, M.A.S.A., Montero Mateos, A., Alloin, F., Sanchez, J.-Y. and Dufresne, A. (2004) Plasticized Nanocomposite Polymer Electrolytes Based on Poly (Oxyethylene) and Cellulose Whiskers. Electrochemica Acta, 49, 4667-4677.
http://dx.doi.org/10.1016/j.electacta.2004.05.021

[332]   Dong, S. and Roman, M. (2007) Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications. Journal of the American Chemical Society, 129, 13810-13811.
http://dx.doi.org/10.1021/ja076196l

[333]   Bodin, A., Backdahl, H. and Gatrnholm, P. (2007) Nano Cellulose as a Scaffold for Tissue Engineered Blood Vessels. Tissue Engineering, 13, 885.

[334]   Liang, D., Hsiao, B.S. and Chu, B. (2007) Functional Electrospun Nanofibrous Scaffolds for Biomedical Applications. Advanced Drug Delivery Reviews, 59, 1392-1412.
http://dx.doi.org/10.1016/j.addr.2007.04.021

[335]   Wan, Z., Huang, Y., Yuan, C.D., Raman, S., Zhu, Y., Jiang, H.J., He, F. and Gao, C. (2007) Biomimetic Synthesis of Hydroxyapatite/Bacterial Cellulose Nanocomposites. Materials Science and Engineering, 27, 855-864.
http://dx.doi.org/10.1016/j.msec.2006.10.002

[336]   Barbanti, S.H., Zavaglia, C.A.C. and Duek, E.A.R. (2005) Polímeros Bioreabsorvíveis na Engenharia de Tecidos. Polímeros: Ciência e Tecnologia, 15, 13-21.
http://dx.doi.org/10.1590/S0104-14282005000100006

[337]   Pooyan, P., Tannenbaum, R. and Garmestani, H. (2012) Mechanical Behavior of a Cellulose-Reinforced Scaffold in Vascular Tissue Engineering. Journal of the Mechanical Behavior of Biomedical Materials, 7, 50-59.
http://dx.doi.org/10.1016/j.jmbbm.2011.09.009

[338]   Saska, S., Barud, H.S., Gaspar, A.M.M., Marchetto, R., Ribeiro, S.J.L. and Messaddeq, Y. (2011) Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration. International Journal of Biomaterials, 2011, 1-8.
http://dx.doi.org/10.1155/2011/175362

[339]   Cherian, B.M., Le?o, A.L., Souza, S.F., Costa, L.M.M., Olyveira, G.M., Kottaisamy, M., Nagarajan, E.R. and Thomas, S. (2011) Cellulose Nanocomposites with Nanofibres Isolated from Pineapple Leaf Fibers for Medical Applications. Carbohydrate Polymers, 86, 1790-1798.
http://dx.doi.org/10.1016/j.carbpol.2011.07.009

 
 
Top