[1] Zhang, T., Barry, R.G., Knowles, K., et al. (2003) Distribution of Seasonally and Perennially Frozen Ground in the Northern Hemisphere. Proceedings of the 8th International Conference on Permafrost, AA Balkema Publishers, 2, 1289-1294.
[2] Zhang, X. and Sun, S. (2011) The Impact of Soil Freezing/Thawing Processes on Water and Energy Balances. Advances in Atmospheric Sciences, 28, 169-177.
http://dx.doi.org/10.1007/s00376-010-9206-0
[3] Henry, H.A.L. (2008) Climate Change and Soil Freezing Dynamics: Historical Trends and Projected Changes. Climatic Change, 87, 421-434.
http://dx.doi.org/10.1007/s10584-007-9322-8
[4] Kojima, Y., Heitman, J.L., Flerchinger, G.N., et al. (2013) Numerical Evaluation of a Sensible Heat Balance Method to Determine Rates of Soil Freezing and Thawing. Vadose Zone Journal, 12.
http://dx.doi.org/10.2136/vzj2012.0053
[5] Schuur, E.A.G. and Abbott, B. (2011) High Risk of Permafrost Thaw. Nature, 480, 32-33.
http://dx.doi.org/10.1038/480032a
[6] Romanovsky, V.E. and Osterkamp, T.E. (2000) Effects of Unfrozen Water on Heat and Mass Transport Processes in the Active Layer and Permafrost. Permafrost and Periglacial Processes, 11, 219-239.
http://dx.doi.org/10.1002/1099-1530(200007/09)11:3<219::AID-PPP352>3.0.CO;2-7
[7] Overduin, P.P., Kane, D.L. and van Loon, W.K.P. (2006) Measuring Thermal Conductivity in Freezing and Thawing Soil Using the Soil Temperature Response to Heating. Cold Regions Science and Technology, 45, 8-22.
http://dx.doi.org/10.1016/j.coldregions.2005.12.003
[8] Cruse, R.M., Mier, R. and Mize, C.W. (2001) Surface Residue Effects on Erosion of Thawing Soils. Soil Science Society of America Journal, 65, 178-184.
http://dx.doi.org/10.2136/sssaj2001.651178x
[9] Zhang, Y., Carey, S.K. and Quinton, W.L. (2008) Evaluation of the Algorithms and Parameterizations for Ground Thawing and Freezing Simulation in Permafrost Regions. Journal of Geophysical Reaseach: Atmospheres, 113.
http://dx.doi.org/10.1029/2007JD009343
[10] Buehrer, T.F. and Rose, M.S. (1943) Studies in Soil Structure V. Bound Water in Normal and Puddled Soils.
[11] Williams, P.J. (1964) Unfrozen Water Content of Frozen Soils and Soil Moisture Suction. Geotechnique, 14, 231-246.
http://dx.doi.org/10.1680/geot.1964.14.3.231
[12] Kaiser, L.G., Meersmann, T., Logan, J.W., et al. (2000) Visualization of Gas Flow and Diffusion in Porous Media. Proceedings of the National Academy of Sciences, 97, 2414-2418.
http://dx.doi.org/10.1073/pnas.050012497
[13] Spaans, E.J.A. and Baker, J.M. (1996) The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic. Soil Science Society of America Journal, 60, 13-19.
http://dx.doi.org/10.2136/sssaj1996.03615995006000010005x
[14] Bandfield, J.L. (2007) High-Resolution Subsurface Water-Ice Distributions on Mars. Nature, 447, 64-67.
[15] Hauck, C., Böttcher, M. and Maurer, H. (2011) A New Model for Estimating Subsurface Ice Content Based on Combined Electrical and Seismic Data Sets. The Cryosphere, 5, 453-468.
http://dx.doi.org/10.5194/tc-5-453-2011
[16] Basinger, J.M., Kluitenberg, G.J., Ham, J.M., Frank, J.M., Barnes, P.L. and Kirkham, M.B. (2003) Laboratory Evaluation of the Dual-Probe Heat-Pulse Method for Measuring Soil Water Content. Vadose Zone Journal, 2, 389-399.
[17] Liu, G. and Si, B.C. (2008) Dual-Probe Heat Pulse Method for Snow Density and Thermal Properties Measurement. Geophysical Research Letters, 35, L16404.
http://dx.doi.org/10.1029/2008GL034897
[18] Tang, A.-M., Cui, Y.-J. and Le, T.-T. (2008) A Study on the Thermal Conductivity of Compacted Bentonites. Applied Clay Science, 41, 181-189.
http://dx.doi.org/10.1016/j.clay.2007.11.001
[19] Smits, K.M., Sakaki, T., Limsuwat, A. and Illangasekare, T.H. (2009) Determination of the Thermal Conductivity of Sands under Varying Moisture, Drainage/Wetting, and Porosity Conditions-Applications in Near-Surface Soil Moisture Distribution Analysis. AGU Hydrology Days.
[20] Jorgenson, M.T., Romanovsky, V., Harden, J., et al. (2010) Resilience and Vulnerability of Permafrost to Climate Change. Canadian Journal of Forest Research, 40, 1219-1236.
http://dx.doi.org/10.1139/X10-060
[21] Cheng, G.D. and Zhao, L. (2000) The Problems Associated with Permafrost in the Qinghai-Xizang Plateau. Quaternary Sciences, 20, 521-531.
[22] Wu, T., Zhao, L., Li, R., Wang, Q.X., Xie, C.W. and Pang, Q.Q. (2013) Recent Ground Surface Warming and Its Effects on Permafrost on the Central Qinghai-Tibet Plateau. International Journal of Climatology, 33, 920-930.
http://dx.doi.org/10.1002/joc.3479
[23] Chen, B. and Li, J. (2008) Characteristics of Spatial and Temporal Variation of Seasonal and Short-Term Frozen Soil in China in Recent 50 Years. Chinese Journal of Atmospheric Sciences, 32, 432-443. (In Chinese)
[24] Gong, Z.T., Zhao, Q.G., Zeng, S.Z., et al. (1978) A Drafting Proposal for Soil Classification of China. Soils, 10, 168-169. (In Chinese)
[25] Bristow, K.L., Kluitenberg, G.J. and Horton, R. (1994) Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Science Society of America Journal, 58, 1288-1294.
http://dx.doi.org/10.2136/sssaj1994.03615995005800050002x
[26] Putkonen, J. (1998) Soil Thermal Properties and Heat Transfer Processes Near Ny-Alesund, Northwestern Spitsbergen, Svalbard. Polar Research, 17, 165-179.
http://dx.doi.org/10.1111/j.1751-8369.1998.tb00270.x
[27] Putkonen, J. (2003) Determination of Frozen Soil Thermal Properties by Heated Needle Probe. Permafrost and Periglacial Processes, 14, 343-347.
http://dx.doi.org/10.1002/ppp.465
[28] Ling, F. and Zhang, T. (2004) A Numerical Model for Surface Energy Balance and Thermal Regime of the Active Layer and Permafrost Containing Unfrozen Water. Cold Regions Science and Technology, 38, 1-15.
http://dx.doi.org/10.1016/S0165-232X(03)00057-0
[29] Hinkel, K.M. and Outcalt, S.I. (1993) Detection of Nonconductive Heat Transport in Soils Using Spectral Analysis. Water Resources Research, 29, 1017-1023.
http://dx.doi.org/10.1029/92WR02596
[30] Zhou, J. and Li, D. (2012) Numerical Analysis of Coupled Water, Heat and Stress in Saturated Freezing Soil. Cold Regions Science and Technology, 72, 43-49.
http://dx.doi.org/10.1016/j.coldregions.2011.11.006
[31] Abu-Hamdeh, N.H. (2003) Thermal Properties of Soils as Affected by Density and Water Content. Biosystems Engineering, 86, 97-102.
http://dx.doi.org/10.1016/S1537-5110(03)00112-0
[32] Xu, X., Oliphant, J.L. and Tice, A.R. (1985) Soil-Water Potential and Unfrozen Water Content and Temperature. Journal of Glaciology and Geocryology, 7, 1-14.
[33] Monson, R.K., Lipson, D.L., Burns, S.P., et al. (2006) Winter Forest Soil Respiration Controlled by Climate and Microbial Community Composition. Nature, 439, 711-714.
http://dx.doi.org/10.1038/nature04555
[34] Wallenstein, M., Allison, S.D., Ernakovich, J., Steinweg, J.M. and Sinsabaugh, R. (2011) Controls on the Temperature Sensitivity of Soil Enzymes: A Key Driver of In situ Enzyme Activity Rates. In: Shukla, G. and Varma, A., Eds., Soil Enzymology, Springer, Berlin, 245-258.
[35] Lipson, D.A. (2007) Relationships between Temperature Responses and Bacterial Community Structure along Seasonal and Altitudinal Gradients. FEMS Microbiology Ecology, 59, 418-427.
http://dx.doi.org/10.1111/j.1574-6941.2006.00240.x
[36] Koponen, H.T., Jaakkola, T., Keinänen-Toivola, M.M., et al. (2006) Microbial Communities, Biomass, and Activities in Soils as Affected by Freeze Thaw Cycles. Soil Biology and Biochemistry, 38, 1861-1871.
http://dx.doi.org/10.1016/j.soilbio.2005.12.010
[37] Yergeau, E. and Kowalchuk, G.A. (2008) Responses of Antarctic Soil Microbial Communities and Associated Functions to Temperature and Freeze-Thaw Cycle Frequency. Environmental Microbiology, 10, 2223-2235.
http://dx.doi.org/10.1111/j.1462-2920.2008.01644.x
[38] Kay, B.D., Fukuda, M., Izuta, H. and Sheppard, M.I. (1981) The Importance of Water Migration in the Measurement of the Thermal Conductivity of Unsaturated Frozen Soils. Cold Regions Science and Technology, 5, 95-106.
http://dx.doi.org/10.1016/0165-232X(81)90044-6
[39] Lu, S., Ren, T., Gong, Y. and Horton, R. (2007) An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Science Society of America Journal, 71, 8-14.
http://dx.doi.org/10.2136/sssaj2006.0041
[40] Nikolaev, I.V., Leong, W.H. and Rosen, M.A. (2013) Experimental Investigation of Soil Thermal Conductivity over a Wide Temperature Range. International Journal of Thermophysics, 34, 1110-1129.
http://dx.doi.org/10.1007/s10765-013-1456-5
[41] Campbell, G.S., Jungbauer Jr., J.D., Bidlake, W.R. and Hungerford, R.D. (1994) Predicting the Effect of Temperature on Soil Thermal Conductivity. Soil Science, 158, 307-313.
http://dx.doi.org/10.1097/00010694-199411000-00001
[42] Ochsner, T.E., Horton, R. and Ren, T. (2001) A New Perspective on Soil Thermal Properties. Soil Science Society of America Journal, 65, 1641-1647.
http://dx.doi.org/10.2136/sssaj2001.1641
[43] Seigo, S. (1977) Temperature Dependence of Thermal Conductivity of Frozen Soil. Research Report of Kitami Institute of Technology, 9, 111-122.