Back
 ENG  Vol.8 No.5 , May 2016
Design and Optimization of Steel Car Body Structures via Local Laser-Strengthening
Abstract: Continuously rising demands of legislators require a significant reduction of CO2-emission and thus fuel consumption across all vehicle classes. In this context, lightweight construction materials and designs become a single most important factor. The main engineering challenge is to precisely adapt the material and component properties to the specific load situation. However, metallic car body structures using “Tailored blanks” or “Patchwork structures” meet these requirements only insufficiently, especially for complex load situations (like crash). An innovative approach has been developed to use laser beams to locally strengthen steel crash structures used in vehicle bodies. The method tailors the workpiece hardness and thus strength at selected locations to adjust the material properties for the expected load distribution. As a result, free designable 3D-strengthening-patterns surrounded by softer base metal zones can be realized by high power laser beams at high processing speed. The paper gives an overview of the realizable process window for different laser treatment modes using current high brilliant laser types. Furthermore, an efficient calculation model for determining the laser track properties (depth/width and flow curve) is shown. Based on that information, simultaneous FE modelling can be efficiently performed. Chassis components are both statically and cyclically loaded. Especially for these components, a modulation of the fatigue behavior by laser-treated structures has been investigated. Simulation and experimental results of optimized crash and deep drawing components with up to 55% improved level of performance are also illustrated.
Cite this paper: Wagner, M. , Jahn, A. , Beyer, E. and Balzani, D. (2016) Design and Optimization of Steel Car Body Structures via Local Laser-Strengthening. Engineering, 8, 276-286. doi: 10.4236/eng.2016.85024.
References

[1]   Friedrich, H.E. (2013) Leichtbau in der Fahrzeugtechnik. Springer Vieweg, Wiesbaden.
http://dx.doi.org/10.1007/978-3-8348-2110-2

[2]   Sonsino, C.M. (2008) Betriebsfestigkeit—Eine Einführung in die Begriffe und ausgewählte Bemessungsgrundlagen. MP Materials Testing, Carl Hanser Verlag, München, Vol. 50.
http://dx.doi.org/10.3139/120.100862

[3]   Mitschke, M. and Wallentowitz, H. (2014) Dynamik der Kraftfahrzeuge. Springer Vieweg, Wiesbaden.
http://dx.doi.org/10.1007/978-3-658-05068-9

[4]   Freytag, P. (2006) Technische Fortschritte vergröβern IHU-Potenzial. BLECH InForm, 5, 100-103.

[5]   Lenze, F.-J. and Sikora, S. (2009) Verfahren zum Umformen von Platinen aus höher- und höchstfesten Stählen. European Patent Office, EP 2012948B1.

[6]   Official Safety Assessment of the VW UP (2011).
http://www.euroncap.com/de/results/vw/up!/11001

[7]   Mende, O. (2011) VW Up! Karosserie und Sicherheitskonzept. In: ATZextra, Edition 09/2011, 26-31.

[8]   Wagner, M., Jahn, A., Standfuβ, J., Brenner, B. and Beyer, E. (2014) Innovative Joining Technologies for Multi-Material Lightweight Car Body Structures. Proceedings of the International Automotive Body Congress (IABC), Dear-born, 29-30 October 2014.

[9]   Wagner, M. (2011) Simulation des Verformungsverhaltens laserverfestigter Karosseriestrukturen. Diploma Thesis, Fraunhofer IWS and TU Bergakademie Freiberg, Dresden.

[10]   Wagner, M., Jahn, A. and Kröger, M. (2012) Belastungsangepasstes Bauteil- und Werkstoffdesign mithilfe lokaler Laserverfestigung. Lightweight Design, 5, 34-39.

[11]   Birkert, A., Haage, S. and Straub, M. (2013) Umformtechnische Herstellung komplexer Karosserieteile. Springer Vieweg, Berlin, Heidelberg.

[12]   Jahn, A., Heitmanek, M., Standfuβ, J., Brenner, B., Donat, B., Wunderlich, G., Mickel, P. and Vogel, T. (2010) Lokale Laserbehandlung zur Steigerung der Crash-Belastbarkeit von Karosseriebauteilen. Conference Paper, Groβe Schweiβtechnische Tagung 2010, Student Congress, Final Colloquium Integration des Rührreibschweiβens in Fertigungsprozessketten, Nuremburg, 27-28th September 2010, DVS Media (DVS-Report 267).

[13]   Jahn, A., Ahnert, M. and Kühn, T. (2009) Funktions- und werkstoffangepasste Laserbehandlung—Tailored Micro-structuring von hochfesten Feinblechen. Final Report of Research Project Nr. S 769, Stiftung Industrieforschung, Fraunhofer IWS, Fraunhofer IWU, Dresden.

[14]   Neugebauer, R., Beyer, E., Mauermann, R. and Standfuβ, J. (2011) Lokale funktions- und werkstoffangepasste Wärmebehandlung—Lokales Laserhärten von hochfesten Blechstrukturen. Final Report of Fraunhofer FPP Program Strukturiertes Laserhärten, Fraunhofer IWU, Chemnitz and Fraunhofer IWS, Dresden.

[15]   Jahn, A. (2009) Localizes Laser Strengthening to Improve Crash Behavior. Annual Report 2009, Fraunhofer IWS, Dresden.
http://www.iws.fraunhofer.de/en/pressandmedia/publications/annual_reports.html

[16]   Wagner, M. (2013) Laserverfestigte Fahrzeugcrashstrukturen—Wie die Fahrzeugmasse gesenkt und gleichzeitig die Crashsicherheit gesteigert werden kann. Journal of wt Werkstattstechnik Online, 103, 485-487.

[17]   Heinzmann, M. (2016) Studie zur Bestimmung der Prozessgrenzen beim lokalen Laserstrahlumschmelzhärten von Karosseriefeinblechen. Minor Thesis, Fraunhofer IWS and TU Dresden, Dresden.

[18]   Larour, P. (2010) Strain Rate Sensitivity of Automotive Sheet Steels: Influence of Plastic Strain, Strain Rate, Temperature, Microstructure, Bake Hardening And Pre-Strain. Ph.D. Thesis, Rhine-Westphalian Technical College of Aachen, Aachen.

[19]   Hügel, H. And Graf, T. (2009) Laser in der Fertigung: Strahlquellen, Systeme, Fertigungsverfahren. Vieweg Teubner, Wiesbaden.
http://dx.doi.org/10.1007/978-3-8348-9570-7

[20]   Gref, W. (2005) Laserstrahlschweiβen von Aluminiumwerkstoffen mit der Fokusmatrixtechnik. Ph.D. Thesis, University of Stuttgart, Stuttgart.

[21]   Beyer, E. (1995) Schweiβen mit Laser: Grundlagen. Springer Verlag, Aachen.
http://dx.doi.org/10.1007/978-3-642-75759-4

[22]   Doege, E., Meyer-Nolkemper, H. and Saeed, I. (1986) Fliesskurvenatlas metallischer Werkstoffe. München; Wien, Hanser.

[23]   Crashsicherheit beim Audi A8, Audi Technology Portal (2011).
http://www.audi-technology-portal.de/de/karosserie/steifigkeit-crashsicherheit/crashsicherheit

[24]   Wagner, M. (2015) Laser Strengthened Steel Sheet Structures—Now Withstanding High Cyclic Loads! Fraunhofer IWS Annual Report 2015 (2015). (In Press).
http://www.iws.fraunhofer.de/en/pressandmedia/publications/annual_reports.html

[25]   Holterhof, T. (2015) Schwingfestigkeit laserverfestigter Strukturen für die Anwendung in Fahrwerkskomponenten. Diploma Thesis, Fraunhofer IWS and TU Dresden, Dresden.

 
 
Top