AiM  Vol.6 No.6 , May 2016
Safety Properties and Probiotic Potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895
Abstract: This study reports on the safety and putative probiotic properties of Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. According to the bacterial reverse mutation (Ames) test, cell-free supernatants of B. amyloliquefaciens B-1895 and B. subtilis KATMIRA1933 were not mutagenic. The two strains co-aggregated with Escherichia coli and Pseudomonas aeruginosa, and cell-free supernatants inhibited the growth of Streptococcus intermedius and Porphyromonas gingivalis. Endospores of B. amyloliquefaciens B-1895 and B. subtilis KATMIRA1933 were tolerant to 0.3% (w/v) bile salts and survived incubation for 4 h in MRS broth at pH 2.0 to 3.0. The ability of the two strains to produce antimicrobial compounds potentiates their application in health care formulations, personal care products, food and animal feed.
Cite this paper: AlGburi, A. , Volski, A. , Cugini, C. , Walsh, E. , Chistyakov, V. , Mazanko, M. , Bren, A. , Dicks, L. , Chikindas, M. , (2016) Safety Properties and Probiotic Potential of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895. Advances in Microbiology, 6, 432-452. doi: 10.4236/aim.2016.66043.

[1]   FAO/WHO (2006) Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation. FAO Food and Nutritional, Paper No. 85.

[2]   Hong, H.A., Duc, L.H. and Cutting, S.M. (2005) The Use of Bacterial Spore Formers as Probiotics. FEMS Microbiology Review, 29, 813-835.

[3]   Scientific Committee of the European Food Safety Authority (2007) Introduction of a Qualified Presumption of Safety (QPS) Approach for Assessment of Selected Microorganisms Referred to EFSA—Opinion of the Scientific Committee. The EFSA Journal, 587, 1-16.

[4]   Leyer, G.J., Li, S., Mubasher, M., Reifer, C. and Ouwehand, A.C. (2009) Probiotic Effects on Cold and Influenza-Like Symptom Incidence and Duration in Children. Pediatrics, 124, 172-179.

[5]   Yamashiro, Y. and Nagata, S. (2010) Beneficial Microbes for Premature Infants, and Children with Malignancy Undergoing Chemotherapy. Beneficial Microbes, 1, 357-365.

[6]   Thirabunyanon, M. and Thongwittaya, N. (2012) Protection Activity of a Novel Probiotic Strain of Bacillus subtilis against Salmonella Enteritidis Infection. Research in Veterinary Science, 93, 74-81.

[7]   Allen, H.K., Trachsel, J., Looft, T. and Casey, T.A. (2014) Finding Alternatives to Antibiotics. Annals of the New York Academy of Sciences, 1323, 91-100.

[8]   Khochamit, N., Siripornadulsil, S., Sukon, P. and Siripornadulsil, W. (2015) Antibacterial Activity and Genotypic-Phenotypic Characteristics of Bacteriocin-Producing Bacillus subtilis KKU213: Potential as a Probiotic Strain. Microbiological Research, 170, 36-50.

[9]   Sutyak, K.E., Wirawan, R.E., Aroutcheva, A.A. and Chikindas, M.L. (2008) Isolation of the Bacillus subtilis Antimicrobial Peptide Subtilosin from the Dairy Product-Derived Bacillus amyloliquefaciens. Journal of Applied Microbiology, 104, 1067-1074.

[10]   Gandhi, M. and Chikindas, M.L. (2007) Listeria: A Foodborne Pathogen That Knows How to Survive. International Journal Food Microbiology, 113, 1-15.

[11]   Golovko, G.V., Zipelt, L.I., Karpenko, G.I., Chistyakov, V.A., Sazykina, M.A. and Kolenko, M.A. (2008) Method for Growth of Young Azov-Chernomorskaya Royal Fish in Ponds. RU Patent No. 2376755.

[12]   Molnár, A.K., Podmaniczky, B., Kürti, P., Tenk, I., Glávits, R., Virág, G. and Szabó, Z. (2011) Effect of Different Doncentrations of Bacillus subtilis on Growth Performance, Carcase Quality, Gut Microflora and Immune Response of Broiler Chickens. British Poultry Science, 52, 658-665.

[13]   Chistyakov, V., Melnikov, V., Chikindas, M.L., Khutsishvili, M., Chagelishvili, A., Bren, A., Kostina. N., Cavera, V. and Elisashvili, V. (2015) Poultry-Beneficial Solid-State Bacillus amyloliquefaciens B-1895 Fermented Soybean Formulation. Bioscience of Microbiota, Food and Health, 3, 25-28.

[14]   Prazdnova, E.V., Chistyakov, V.A., Churilov, M.N., Mazanko, M.S., Bren, A.B., Volski, A. and Chikindas, M.L. (2015) DNA-Protection and Antioxidant Properties of Fermentates from Bacillus amyloliquefaciens B-1895 and Bacillus subtilis KATMIRA1933. Letters in Applied Microbiology, 61, 549-554.

[15]   Inglis, V. (1999) Antibacterial Chemotherapy and Drug Resistance in Aquaculture. In: Karunasagar, I., Karunasagar, I. and Reilly, A., Eds., Aquaculture and Biotechnology, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 135-155.

[16]   Cartwright, P. (2009) Bacillus subtilis—Identification and Safety. Probiotics News, No. 2, 1-3.

[17]   Monod, M., Denoya, C. and Dubnau, D. (1986) Sequence and Properties of pIM13, Amacrolide-Lincosamide-Streptogramin B Resistance Plasmid from Bacillus subtilis. Journal of Bacteriology, 167, 138-147.

[18]   Roberts, A.P., Pratten, J., Wilson, M. and Mullany, P. (1999) Transfer of a Conjugative Transposon, Tn5397 in a Model Oral Biofilm. FEMS Microbiology Letters, 177, 63-66.

[19]   Dai, L., Wu, C.M., Wang, M.G., Wang, Y., Huang, S.Y., Xia, L.N., Li, B.B. and Shen, J.Z. (2010) First Report of the Multi-Drug Resistance Gene cfr and the Phenicol Resistance Gene fexA in a Bacillus Strain from Swine Feces. Antimicrobial Agents and Chemotherapy, 54, 3953-3955.

[20]   Phelan, R.W., O’Halloran, A., Kennedy, J., Morrissey, J.P., Dobson, A.D., O’Gara, F. and Barbosa, T.M. (2011) Tetracycline Resistance-Encoding Plasmid from Bacillus sp. Strain #24, Isolated from the Marine Sponge Haliclona simulans. Applied and Environmental Microbiology, 77, 327-329.

[21]   Rosendal, S., Devenish, J., MacInnes, J.I., Lumsden, J.H., Watson, S. and Xun, H. (1988) Evaluation of Heat-Sensitive, Neutrophil-Toxic, and Hemolytic Activity of Haemophilus (Actinobacillus) Pleuropneumoniae. American Journal of Veterinary Research, 49, 1053-1058.

[22]   Arzanlou, M. and Bohlooli, S. (2010) Inhibition of Streptolysin O by Allicin—An Active Component of Garlic. Journal of Medical Microbiology, 59, 1044-1049.

[23]   Luo, C., Liu, X., Zhou, H., Wang, X. and Chen, Z. (2014) Identification of Four NRPS Gene Clusters in Bacillus subtilis 916 for Four Families of Lipopeptides Biosynthesis and Evaluation of Their Intricate Functions to the Typical Phenotypic Features. Applied and Environmental Microbiology, 81, 422-443.

[24]   Pan, X., Chen, X., Su, X., Feng, Y., Tao, Y. and Dong, Z. (2014) Involvement of SpoVG in Hemolysis Caused by Bacillus subtilis. Biochemical and Biophysical Research Communications, 443, 899-904.

[25]   Goebel, W., Chakraborty, T. and Kreft, J. (1988) Bacterial Hemolysins as Virulence Factors. Antonie van Leeuwenhoek, 54, 453-463.

[26]   Liu, L., Liu, Y.F., Shin, H.D., Chen, R.R., Wang, N.S., Li, J., Du, G. and Chen, J. (2013) Developing Bacillus spp. as a Cell Factory for Production of Microbial Enzymes and Industrially Important Biochemicals in the Context of Systems and Synthetic Biology. Applied Microbiology and Biotechnology, 97, 6113-6127.

[27]   Gupta, R., Beg, Q.K. and Lorenz, P. (2002) Bacterial Alkaline Proteases: Molecular Approaches and Industrial Applications. Applied Microbiology and Biotechnology, 59, 15-32.

[28]   Rojas, J.B.U., Verreth, J.A.J., Amato, S. and Huisman, E.A. (2003) Biological Treatments Affect the Chemical Composition of Coffee Pulp. Bioresource Technology, 89, 267-274.

[29]   Phromraksa, P., Nagano, H., Boonmars, T. and Kamboonruang, C. (2008) Identification of Proteolytic Bacteria from Thai Traditional Fermented Foods and Their Allergenic Reducing Potentials. Journal of Food Science, 73, M189-M195.

[30]   Mortelmans, K. and Zeigerm E, (2000) The Ames Salmonella/Microsome Mutagenicity Assays. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis, 455, 29-60.

[31]   Loeb, K.R. and Loeb, L.A. (2000) Significance of Multiple Mutations in Cancer. Carcinogenesis, 21, 379-385.

[32]   Succi, M., Tremonte, P., Reale, A., Sorrentino, E., Grazia, L., Pacifico, S. and Coppola, R. (2005) Bile Salt and Acid Tolerance of Lactobacillus rhamnosus Strains Isolated from Parmigiano Reggiano Cheese. FEMS Microbiology Letters, 244, 129-137.

[33]   Erkkila, S. and Petaja, E. (2000) Screening of Commercial Meat Starter Cultures at Low pH and in the Presence of Bile Salts for Potential Probiotic Use. Meat Science, 55, 297-300.

[34]   Huang, Y. and Adams, M.C. (2004) In Vitro Assessment of the Upper Gastrointestinal Tolerance of Potential Probiotic Dairy Propionibacteria. International Journal of Food Microbiology, 91, 253-260.

[35]   Ledder, R.G., Timperley, A.S., Friswell, M.K., Macfarlane, S. and McBain, A.J. (2008) Coaggregation between and Among Human Intestinal and Oral Bacteria. FEMS Microbiology Ecology, 66, 630-636.

[36]   Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. and Matosic, S. (2003) Adhesion and Aggregation Ability of Probiotic Strain Lactobacillus acidophilus M92. Journal of Applied Microbiology, 94, 981-987.

[37]   Clinical and Laboratory Standards Institute (CLSI) (2012) Performance Standards for Antimicrobial Disk Susceptibility Tests. 11th Edition, Approved Standard, M02-A11.

[38]   Maron, D. and Ames, B. (1983) Revised Methods for the Salmonella Mutagenicity Test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113, 173-215.

[39]   Cappuccino, J.G. and Sherman, N. (2004) Microbiology: A Laboratory Manual. Pearson Education, Singapore, 491.

[40]   Kirkland, D.J. (1989) Statistical Evaluation of Mutagenicity Test Data, UKEMS Subcommittee on Guidelines for Mutagenicity Testing. Cambridge University Press, Cambridge, 102-140.

[41]   Ponmurugan, P. (2007) Proteolytic Activity of Bacillus cereus under in Vitro Condition. Journal of Biological Sciences, 7, 65-67.

[42]   Uyar, F., Porsuk, I., Kizil, G. and Yilmaz, E.I. (2011) Optimal Conditions for Production of Extracellular Protease from Newly Isolated Bacillus cereus Strain CA15. EurAsian Journal of BioSciences, 5, 1-9.

[43]   Luo, G., Samaranayake, L.P. and Yau, J.Y. (2001) Candida Species Exhibit Differential in Vitro Hemolytic Activities. Journal of Clinical Microbiology, 39, 2971-2974.

[44]   Cisar, J.O., Kolenbrander, P.E. and McIntire, F.C. (1979) Specificity of Coaggregation Reactions between Human Oral Streptococci and Strains of Actinomyces viscosus or Actinomyces naeslundii. Infection and Immunity, 24, 742-752.

[45]   Handley, P.S., Harty, D.W., Wyatt, J.E., Brown, C.R., Doran, J.P. and Gibbs, A.C. (1987) A Comparison of the Adhesion, Coaggregation and Cell-Surface Hydrophobicity Properties of Fibrillar and Fimbriate Strains of Streptococcus salivarius. Journal of General Microbiology, 133, 3207-3217.

[46]   Franklin, M.L. and Clark, W.A. (1981) Simple, Inexpensive, and Rapid Way to Produce Bacillus subtilis Spores for the Guthrie Bioassay. Journal of Clinical Microbiology, 14, 113-115.

[47]   Hyronimus, B., Le, M.C., Hadj, S.A. and Deschamps, A. (2000) Acid and Bile Tolerance of Spore-Forming Lactic Acid Bacteria. International Journal of Food Microbiology, 61, 193-197.

[48]   Clinical and Laboratory Standards Institute (CLSI) (2007) Performance Standards for Antimicrobial Susceptibility Testing. 17th Edition, Approved Standard, M100-S17.

[49]   Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. (2008) The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genomics, 9, 75.

[50]   Karlyshev, A.V., Melnikov, V.G. and Chistyakov, V.A. (2014) Draft Genome Sequence of Bacillus amyloliquefaciens B-1895. Genome Announcements, 2, e00633-e00614.

[51]   Turovskiy, Y., Cheryian, T., Algburi, A., Wirawan, R.E., Takhistov, P., Sinko, P.J. and Chikindas, M.L. (2012) Susceptibility of Gardnerella vaginalis Biofilms to Natural Antimicrobials Subtilosin, ε-Poly-L-Lysine, and Lauramide Arginine Ethyl Ester. Infectious Diseases in Obstetrics and Gynecology, 2012, Article ID: 284762.

[52]   Algburi, A., Volski, A. and Chikindas, M.L. (2015) Natural Antimicrobials Subtilosin and Lauramide Arginine Ethyl Ester (LAE) Synergize with Conventional Antibiotics Clindamycin and Metronidazole against Biofilms of Gardnerella vaginalis but Not against Biofilms of Healthy Vaginal Lactobacilli. Pathogens and Disease, 73, ftv018.

[53]   Shelburne, C.E., An, F.Y., Dholpe, V., Ramamoorthy, A., Lopatin, D.E. and Lantz, M.S. (2007) The Spectrum of Antimicrobial Activity of the Bacteriocin Subtilosin A. Journal of Antimicrobial Chemotherapy, 59, 297-300.

[54]   Tsubura, S., Mizunuma, H., Ishikawa, S., Oyake, I., Okabayashi, M., Katoh, K., Shibata, M., Iizuka, T., Toda, T. and Iizuka, T. (2009) The Effect of Bacillus subtilis Mouth Rinsing in Patients with Periodontitis. European Journal of Clinical Microbiology and Infectious Diseases, 28, 1353-1356.

[55]   Tsubura, S., Waki, Y. and Tsubura, T. (2012) Probiotic Effect of Bacillus subtilis Tablets on Periodontopathic Oral Bacteria. Microbiology Research, 3, 94-98.

[56]   Ganguly, N.K., Bhattacharya, S.K., Sesikeran, B., Nair, G.B., Ramakrishna, B.S., Sachdev, H.P., Batish, V.K., Kanagasabapathy, A.S., Muthuswamy, V., Kathuria, S.C., Katoch, V.M., Satyanarayana, K., Toteja, G.S., Rahi, M., Rao, S., Bhan, M.K., Kapur, R. and Hemalatha, R. (2011) ICMR-DBT Guidelines for Evaluation of Probiotics in Food. Indian Journal of Medical Research, 134, 22-25.

[57]   Gueimonde, M., Sánchez, B., De los Reyes-Gavilán, C.G. and Margolles, A. (2013) Antibiotic Resistance in Probiotic Bacteria. Frontiers in Microbiology, 4, 1-6.

[58]   Aquilanti, L., Garofalo, C., Osimani, A., Silvestri, G., Vignaroli, C. and Clementi, F. (2007) Isolation and Molecular Characterization of Antibiotic-Resistant Lactic Acid Bacteria from Poultry and Swine Meat Products. Journal of Food Protection, 70, 557-565.

[59]   Podlesek, Z., Comino, A., Herzog-Velikonja, B., Zgur-Bertok, D., Komel, R. and Grabnar, M. (1995) Bacillus licheniformis Bacitracin-Resistance ABC Transporter: Relationship to Mammalian Multidrug Resistance. Molecular Microbiology, 16, 969-976.

[60]   Cain, B.D., Norton, P.J., Eubanks, W., Nick, H.S. and Allen, C.M. (1993) Amplification of the bacA Gene Confers Bacitracin Resistance to Escherichia coli. Journal of Bacteriology, 175, 3784-3789.

[61]   Cao, M. and Helmann, J.D. (2002) Regulation of the Bacillus subtilis bcrC Bacitracin Resistance Gene by Two Extracytoplasmic σ Factors. Journal of Bacteriology, 184, 6123-6129.

[62]   Senesi, S., Celandroni, F., Tavanti, A. and Ghelardi, E. (2001) Molecular Characterization and Identification of Bacillus clausii Strains Marketed for Use in Oral Bacteriotherapy. Applied and Environmental Microbiology, 67, 834-839.

[63]   Adimpong, D.B., Sorensen, K.I., Thorsen, L., Stuer-Lauridsen, B., Abdelgadir, W.S., Nielsen, D.S., Derkx, P.M.F. and Jespersen, L. (2012) Antimicrobial Susceptibility of Bacillus Strains Isolated from Primary Starters for African Traditional Bread Production and Characterization of the Bacitracin Operon and Bacitracin Biosynthesis. Applied and Environmental Microbiology, 78, 7903-7914.

[64]   Karlyshev, A.V., Melnikov, V.G. and Chikindas, M.L. (2014) Draft Genome Sequence of Bacillus subtilis Strain KATMIRA1933. Genome Announcements, 2, e00619-e00614.

[65]   Ciffo, F. (1984) Determination of the Spectrum of Antibiotic Resistance of the “Bacillus subtilis” Strains of Enterogermina. Chemioterapia, 3, 45-52.

[66]   Hoa, N.T., Baccigalupi, L., Huxham, A., Smertenko, A., Van, P.H. and Ammendola, S. (2000) Characterization of Bacillus Species Used for Oral Bacteriotherapy and Bacterioprophylaxis of Gastrointestinal Disorders. Applied and Environmental Microbiology, 66, 5241-5247.

[67]   Green, D.H., Wakeley, P.R., Page, A., Barnes, A., Baccigalupi, L., Ricca, E. and Cutting, S.M. (1999) Characterization of Two Bacillus Probiotics. Applied Environmental Microbiology, 65, 4288-4291.

[68]   Health and Consumer Protection Directorate—General of the European Commission (HCPDGEC) (2002) Opinion of the Scientific Committee on Animal Nutrition on the Criteria for Assessing the Safety of Microorganism Resistant to Antibiotics of Human Clinical and Veterinary Importance. Brussels, Belgium: Health and Consumer Protection Directorate. European Commission, 1-10.

[69]   European Food Safety Authority (2012) Scientific Opinion on Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFSA Journal, 10, 2740-2750.

[70]   Mazza, P., Zani, F. and Martelli, P. (1992) Studies on the Antibiotic Resistance of Bacillus subtilis Strains Used in Oral Bacteriotherapy. Bollettino Chimico Farmaceutico, 131, 401-408.

[71]   European Food Safety Authority (2011) Scientific Opinion on the Maintenance of the List of QPS Biological Agents Intentionally Added to Food and Feed. EFSA Journal, 9, 2497.

[72]   Duc, L.H., Hong, H.A. and Cutting, S.M. (2003) Germination of the Spore in the Gastrointestinal Tract Provides a Novel Route for Heterologous Antigen Delivery. Vaccine, 21, 4215-4224.

[73]   Hoa, T.T., Duc, L.H., Isticato, R., Baccigalupi, L., Ricca, E. and Van, P.H. (2001) Fate and Dissemination of Bacillus subtilis Spores in a Murine Model. Applied Environmental Microbiology, 67, 3819-3823.

[74]   European Food Safety Authority (2011) Technical Guidance on the Assessment of the Toxigenic Potential of Bacillus Species Used in Animal Nutrition. EFSA Journal, 9, 2445.

[75]   Patel, A.K., Deshattiwar, M.K., Chaudhari, B.L. and Chincholkar, S.B. (2009) Production, Purification and Chemical Characterization of the Catecholate Siderophore From Potent Probiotic Strains of Bacillus spp. Bioresource Technology, 100, 368-373.

[76]   Trapecar, M., Leouffre, T., Faure, M., Jensen, H.E., Granum, P.E., Cencic, A. and Hardy, S.P. (2011) The Use of a Porcine Intestinal Cell Model System for Evaluating the Food Safety Risk of Bacillus cereus Probiotics and the Implications for Assessing Enterotoxigenicity. APMIS, 119, 877-884.

[77]   Vijayan, M., Deecaraman, M. and Pudupalayam, K.T. (2007) In Vitro Genotoxicity of Piperacillin Impurity-A. African Journal of Biotechnology, 6, 2074-2077.

[78]   Lupi, S., Marconi, S., Paiaro, E., Fochesato, A. and Gregorio, P. (2009) Mutagenicity Evaluation with Ames Test of Hydro-Alcoholic Solution of Terpenes. Journal of Preventive Medicine and Hygiene, 50, 170-174.

[79]   Endres, J.R., Clewell, A., Jade, K.A., Farber, T., Hauswirth, J. and Schauss, A.G. (2009) Safety Assessment of a Proprietary Preparation of a Novel Probiotic, Bacillus coagulans, as a Food Ingredient. Food and Chemical Toxicology, 47, 1231-1238.

[80]   Sevinc, N. and Demirkan, E. (2011) Production of Protease by Bacillus sp. N-40 Isolated from Soil and Its Enzymatic Properties. Journal of Biological and Environmental Sciences, 5, 95-103.

[81]   Duc, L.H., Hong, H.A., Barbosa, T.M., Henriques, A.O. and Cutting, S.M. (2004) Characterization of Bacillus Probiotics Available for Human Use. Applied and Environmental Microbiology, 70, 2161-2171.

[82]   Sudha, R., Chauhan, P. and Dixit, K. (2010) Molecular Typing and Probiotic Attributes of a New Strain of Bacillus coagulans—Unique IS-2: A Potential Biotherapeutic Agent. Genetic Engineering and Biotechnology Journal, 2010, 1-20.

[83]   Guo, X., Li, D., Lu, W., Piao, X. and Chen, X. (2006) Screening of Bacillus Strains as Potential Probiotics and Subsequent Confirmation of the in Vivo Effectiveness of Bacillus subtilis MA139 in Pigs. Antonie Van Leeuwenhoek, 90, 139-146.

[84]   Salminen, S., Isolauri, E. and Salminen, E. (1998) Clinical Uses of Probiotics for Stabilizing the Gut Mucosal Barrier: Successful Strains and Future Challenges. Antonie Van Leeuwenhoek, 70, 347-358.

[85]   Mazza, P. (1994) The Use of Bacillus subtilis as an Antidiarrhoeal Microorganism. Bollettino Chimico Farmaceutico, 133, 3-18.

[86]   Casula, G. and Cutting, S.M. (2002) Bacillus Probiotics: Spore Germination in the Gastrointestinal Tract. Applied and Environmental Microbiology, 68, 2344-2352.

[87]   Barbosa, M.T., Serra, R.C., La Ragione, M.R., Woodward, J.M. and Henriques, A.O. (2005) Screening for Bacillus Isolates in the Broiler Gastrointestinal Tract. Applied and Environmental and Microbiology, 71, 968-978.

[88]   Fakhry, S., Sorrentini, I., Ricca, E., De Felice, M. and Baccigalupi, L. (2008) Characterization of Spore Forming Bacilli Isolated From the Human Gastrointestinal Tract. Journal of Applied Microbiology, 105, 2178-2186.

[89]   Bannerman, T.L. and Peacock, S.J. (2007) Staphylococcus, Micrococcus, and Other Catalase-Positive Cocci. In: Murray, P.R., Baron, E.J., Jorgensen, J.H., Landry, M.L. and Pfaller, M.A., Eds., Manual of Clinical Microbiology, ASM Press, Washington DC, 390-404.

[90]   Kocur, M., Kloos, W.E. and Schleifer, K.H. (2006) The Genus Micrococcus. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H. and Stackebrandt, E., Eds., The Prokaryotes, Springer, New York, 961-971.

[91]   Doyle, M.P. (2003) Escherichia coli O157:H7 and Its Significance in Foods. International Journal of Food Microbiology, 12, 289-301.

[92]   Scallan, E., Hoekstra, R.M., Angulo, F.J., Tauxe, R.V., Widdowson, M.A., Roy, S.L., Jones, J.L. and Griffin, P.M. (2011) Foodborne Illness Acquired in the United States—Major Pathogens. Emerging Infectious Diseases, 17, 7-15.

[93]   Otto, M. (2008) Staphylococcal Biofilms. In: Romeo, T, Ed., Bacterial Biofilms, Springer, Berlin, 207-228.

[94]   Loesche, W.J. (1986) Role of Streptococcus mutans in Human Dental Decay. Microbiological Reviews, 50, 353-380.

[95]   Christopher, A.B., Arndt, A., Cugini, C. and Davey, M.E. (2010) A Streptococcal Effector Protein That Inhibits Porphyromonas gingivalis Biofilm Development. Microbiology, 156, 3469-3477.

[96]   Chun, C.H., Johnson, J.D., Hofstetter, M. and Raff, M.J. (1986) Brain Abscess. A Study of 45 Consecutive Cases. Medicine (Baltimore), 65, 415-431.

[97]   Gandhi, M., Golding, S., Yaron, S. and Matthews, K.R. (2001) Use of Green Fluorescent Protein Expressing Salmonella stanley to Investigate Survival, Spatial Location, and Control on Alfalfa Sprouts. Journal of Food Protection, 64, 1891-1898.

[98]   Proctor, M.E., Hamacher, M., Tortorello, M.L., Archer, J.R. and Davis, J.P. (2001) Multistate Outbreak of Salmonella Serovar Muenchen Infections Associated with Alfalfa Sprouts Grown from Seeds Pretreated with Calcium Hypochlorite. Journal of Clinical Microbiology, 39, 3461-3465.

[99]   Ciesielski, C.A., Hightower, A.W., Parsons, S.K. and Broome, C.V. (1988) Listeriosis in the United States: 1980-1982. Archives of Internal Medicine, 148, 1416-1419.

[100]   Farber, J.M. and Peterkin, P.I. (1991) Listeria monocytogenes, a Food-Borne Pathogen. Microbiological Reviews, 55, 476-511.

[101]   Wilson, D.J., Gabriel, E., Leatherbarrow, A.J., Cheesbrough, J., Gee, S., Bolton, E., Fox, A., Fearnhead, P., Hart, C.A. and Diggle, P.J. (2008) Tracing the Source of Campylobacteriosis. PLoS Genetics, 4, e1000203.

[102]   Friedman, C.R., Neimann, J., Wegener, H.C. and Tauxe, R.V. (2000) Epidemiology of Campylobacter jejuni Infections in the United States and Other industrialized Nations. In: Nachamkin, I. and Blaser, M.J., Eds., Campylobacter, American Society for Microbiology, Washington DC, 121-138.

[103]   Mayo, M.S., Schlitzer, R.L., Ward, M.A., Wilson, L.A. and Ahearn, D.G. (1987) Association of Pseudomonas and Serratia Corneal Ulcers with Use of Contaminated Solutions. Journal of Clinical Microbiology, 25, 1398-1400.

[104]   De Bentzmann, S. and Plésiat, P. (2011) The Pseudomonas aeruginosa Opportunistic Pathogen and Human Infections. Environmental Microbiology, 13, 1655-1665.

[105]   Davies, J.C. (2002) Pseudomonas aeruginosa in Cystic Fibrosis: Pathogenesis and Persistence. Pediatric Respiratory Reviews, 3, 128-134.

[106]   Bodet, C., Chandad, F. and Grenier, D. (2007) Pathogenic Potential of Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, the Red Bacterial Complex Associated with Periodontitis. Pathologie Biologie, 55, 154-162.

[107]   Lamont, R.J. and Jenkinson, H.F. (1998) Life below the Gum Line: Pathogenic Mechanisms of Porphyromonas gingivalis. Microbiology and Molecular Biology Reviews, 62, 1244-1263.

[108]   Marchesan, J.T., Gerow, E.A., Schaff, R., Taut, A.D., Shin, S.Y., Sugai, J., Brand, D., Burberry, A., Jorns, J., Lundy, S.K., Nunez, G., Fox, D.A. and Giannobile, W.V. (2013) Porphyromonas gingivalis Oral Infection Exacerbates the Development and Severity of Collagen-Induced Arthritis. Arthritis Research and Therapy, 15, R186.

[109]   Socransky, S.S. and Haffajee, A.D. (1992) Current Concepts of Bacterial Etiology. Journal of Periodontology, 36, 322-331.

[110]   Mead, P.S., Slutsker, L., Dietz, V., McCaig, L.F., Bresee, J.S., Shapiro, C., Griffin, P.M. and Tauxe, R.V. (1999) Food-Related Illness and Death in the United States. Emerging Infectious Diseases, 5, 607-625.

[111]   Moore, W.E. and Moore, L.V. (1994) The Bacteria of Periodontal Diseases. Periodontology, 5, 66-77.

[112]   Strauss, J., Kaplan, G.G., Beck, P.L., Rioux, K., Panaccione, R., Devinney, R., Lynch, T. and Allen-Vercoe, E. (2000) Invasive Potential of Gut Mucosa-Derived Fusobacterium nucleatum Positively Correlates with IBD Status of the Host. Inflammatory Bowel Diseases, 17, 1971-1978.

[113]   Han, Y.W., Shen, T., Chung, P.I., Buhimschi, A. and Buhimschi, C.S. (2009) Uncultivated Bacteria as Etiologic Agents of Intra-Amniotic Inflammation Leading to Preterm Birth. Journal of Clinical Microbiology, 47, 38-47.

[114]   Castellarin, M., Warren, R.L., Freeman, J.D., Dreolini, L., Krzywinski, M., Strauss, J., Barnes, R., Watson, P., Allen-Vercoe, E., Moore, R.A. and Holt, R.A. (2012) Fusobacterium nucleatum Infection Is Prevalent in Human Colorectal Carcinoma. Genome Research, 22, 299-306.