CS  Vol.7 No.6 , May 2016
Design and Implementation of Efficient Reversible Arithmetic and Logic Unit
ABSTRACT
In computing architecture, ALU plays a major role. Many promising applications are possible with ATMEGA microcontroller. ALU is a part of these microcontrollers. The performance of these microcontrollers can be improved by applying Reversible Logic and Vedic Mathematics. In this paper, an efficient reversible Arithmetic and Logic Unit with reversible Vedic Multiplier is proposed and the simulation results show its effectiveness in reducing quantum cost, number of gates, and the total number of logical calculations.

Cite this paper
Saravanan, S. , Vennila, I. and Mohanram, S. (2016) Design and Implementation of Efficient Reversible Arithmetic and Logic Unit. Circuits and Systems, 7, 630-642. doi: 10.4236/cs.2016.76054.
References
[1]   Landauer, R. (1961) Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5, 183-191.
http://dx.doi.org/10.1147/rd.53.0183

[2]   Bennett, C. (1973) Logical Reversibility of Computation. IBM Journal of Research & Development, 17, 525-532.
http://dx.doi.org/10.1147/rd.176.0525

[3]   Saravanan, S. and Vennila, I. (2015) Design of Reversible 8 × 8 Vedic Multiplier Using TSG and HNG Gates. Presented in National Conference on Research Issues in Computing Held at PSG College of Technology, Coimbatore.

[4]   Thapliyal, H. and Ranganathan, N. (2011) A New Design of the Reversible Subtractor Circuit. Proceedings of IEEE International Conference on Nanotechnology, Portland, 15-18 August 2011 1430-1435.

[5]   Thapliyal, H. and Srinivas, M.B. (2005) A Novel Reversible “TSG” Gate and Its Application for Designing Reversible Carry Look-Ahead and Other Adder Architectures. Proceedings of the 10th Asia-Pacific Computer Systems Architecture Conference, Springer, Singapore, 805-817.

[6]   Haghparast, M., Jassbi, S.J., Navi, K. and Hashemipour, O. (2008) Design of a Novel Reversible Multiplier Circuit Using HNG Gate in Nanotechnology. World Applied Sciences Journal, 3, 974-978.

[7]   Thapliyal, H. and Srinivas, M.B. (2004) High Speed Efficient N X N Bit Parallel Hierarchical Overlay Multiplier Architecture Based on Ancient Indian Vedic Mathematic. Transactions on Engineering, Computing and Technology, 2, 225-228.

[8]   Ali Akbar, E.P., Haghparast, M. and Navi, K. (2011) Novel Design of a Fast Reversible Wallace Sign Multiplier Circuit in Nanotechnology. Microelectronics Journal, 42, 973-981.
http://dx.doi.org/10.1016/j.mejo.2011.05.007

[9]   Wille, R. and Groβe, D. (2007) Fast Exact Toffoli Network Synthesis of Reversible Logic. Proceedings of International Conference on Computer-Aided Design, San Jose, 4-8 November 2007, 60-64.
http://dx.doi.org/10.1109/iccad.2007.4397244

[10]   Wille, R., Le, H.M., Dueck, G.W. and Groβe, D. (2008) Quantified Synthesis of Reversible Logic. Proceedings of Design, Automation & Test in Europe Conference, Munich, 10-14 March 2008, 1015-1020.

[11]   Shende, V.V., Prasad, A.K., Markov, I.L. and Hayes, J.P. (2002) Synthesis of Reversible Logic Circuits. Proceedings of International Conference on Computer-Aided Design, San Jose, 10-14 November 2002, 353-360.
http://dx.doi.org/10.1109/iccad.2002.1167558

[12]   Hung, W.N.N., Song, X., Yang, G., Yang, J. and Perkowski, M. (2004) Quantum Logic Synthesis by Symbolic Reachability Analysis. Proceedings of Design Automation Conference, San Diego, 7-11 July 2004, 838-841.

[13]   Viamontes, G.F., Markov, I.L. and Hayes, J.P. (2007) Checking Equivalence of Quantum Circuits and States. Proceedings of International Conference on CAD, San Jose, 4-8 November 2007, 69-74.
http://dx.doi.org/10.1109/iccad.2007.4397246

[14]   Wang, S.A., Lu, C.Y., Tsai, I.M. and Kuo, S.Y. (2008) An XQDD-Based Verification Method for Quantum Circuits. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E91.A, 584-594.
http://dx.doi.org/10.1093/ietfec/e91-a.2.584

[15]   Wille, R., Gro?e, D., Miller, D.M. and Drechsler, R. (2009) Equivalence Checking of Reversible Circuits. International Symposium on Multi-Valued Logic, Naha, 21-23 May 2009, 324-330.
http://dx.doi.org/10.1109/ismvl.2009.19

[16]   Chidgupkar, P.D. and Karad, M.T. (2004) The Implementation of Vedic Algorithms in Digital Signal Processing. Global Journal of Engineering Education, 8, 153-157.

[17]   Vaidya, S. and Dandekar, D. (2010) Delay-Power Performance Comparison of Multipliers in VLSI Circuit Design. International Journal of Computer Networks & Communications (IJCNC), 2, 47-56.
http://dx.doi.org/10.5121/ijcnc.2010.2405

[18]   Poornima, M., Patil, S.K., Shivukumar, Shridhar, K.P. and Sanjay, H. (2013) Implementation of Multiplier Using Vedic Algorithm. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2, 219-223.

[19]   Dhilon, H.S. and Mitra, A. (2008) A Reduced-Bit Multiplication Algorithm for Digital Arithmetic. World Academy of Science, Engineering and Technology, 19, 719-724.

[20]   Tiwari, H.D., Gankhuyag, G., Kim, C.M. and Cho, Y.B. (2008) Multiplier Design Based on Ancient Indian Vedic Mathematics. Proceedings of International Conference on SoC Design, Busan, 24-25 November 2008, 65-68.

[21]   Lin, R. (2004) A Reconfigurable Inner Product Processor Architecture Implementing Square Recursive Decomposition of Partial Product Matrices. US Patent No. 6,718,465.

[22]   Deodhe, Y., Kakde, S. and Deshmukh, R. (2013) Design and Implementation of 8-Bit Vedic Multiplier Using CMOS Logic. Proceedings of International Conference on Machine Intelligence and Research Advancement (ICMIRA), Katra, 21-23 December 2013, 340-344.
http://dx.doi.org/10.1109/icmira.2013.71

[23]   Kumar, U.C.S.P., Goud, A.S. and Radhika, A. (2013) FPGA Implementation of High Speed 8-Bit Vedic Multiplier Using Barrel Shifter. Proceedings of International Conference on Energy Efficient Technologies for Sustainability (ICEETS), Nagercoil, 10-12 April 2013, 14-17.
http://dx.doi.org/10.1109/ICEETS.2013.6533349

[24]   Haghparast, M. and Shams, M. (2013) A Novel Nanometric Parity Preserving Reversible Vedic Multiplier. Journal of Basic Applied Sciences and Research, 3, 771-776.

[25]   Saravanan, P., Chandrasekar, P., Chandran, L., Sriram, N. and Kalpana, P. (2012) Design and Implementation of Efficient Vedic Multiplier Using Reversible Logic. In: Rahaman, H., Chattopadhyay, S. and Chattopadhyay, S., Eds., Progress in VLSI Design and Test, Lecture Notes in Computer Science, Vol. 7373, Springer, Berlin, 364-366.
http://dx.doi.org/10.1007/978-3-642-31494-0_45

[26]   Viswanath, L. and Ponni, M. (2012) Design and Analysis of 16 Bit Reversible ALU. IOSR Journal of Computer Engineering (IOSRJCE), 1, 46-53.
http://dx.doi.org/10.9790/0661-0114653

[27]   Nagarjun, K. and Srinivas, S. (2013) A New Design of Multiplier Using Modified Booth Algorithm and Reversible Gate Logic. International Journal of Computer Applications Technology and Research, 2, 743-747.
http://dx.doi.org/10.7753/IJCATR0206.1021

[28]   Darshan, H., Mohanraj, R., Kavya, H.B., Monisha, U.K. and Maralabhavi, S. (2015) Design and Synthesis of 8 Bit Reversible Arithmetic & Logical Unit (ALU). Transactions on Electrical and Electronics Engineering (ITSI-TEEE), 3, 2320-2325.

[29]   Schreiber, M. (2007).
https://en.wikipedia.org/wiki/Gray_code

[30]   Landau, S. (2011).
http://irreal.org/blog/?p=84

[31]   Atmel Corporation (2002).
http://www.atmel.com/Images/doc1631.pdf

 
 
Top