IJAA  Vol.6 No.2 , June 2016
Screening Breakdown for Finite-Range Gravitational Field and the Motion of Galaxies in the Local Group
Abstract: The lack of Birkhoff theorem in finite-range gravitation reveals nonzero acceleration of the test body inside the massive spherical shell, as well as breakdown of screening inside the charged conductor gives rise to acceleration of the test charge. An application of this effect to the motion of galaxies in Local Group allows to constraint quintessence parameter in some massive gravitational theories.
Cite this paper: Chugreev, Y. , Modestov, K. (2016) Screening Breakdown for Finite-Range Gravitational Field and the Motion of Galaxies in the Local Group. International Journal of Astronomy and Astrophysics, 6, 145-154. doi: 10.4236/ijaa.2016.62012.

[1]   Goldhaber, A.S. and Nieto, M.M. (1971) Terrestrial and Experimental Limits on the Photon Mass. Review of Modern Physics, 43, 277-296.

[2]   Goldhaber, A.S. and Nieto, M.M. (2010) Photon and Graviton Mass Limits. Review of Modern Physics, 82, 939-979.

[3]   Chibisov, G.V. (1976) Astrophysical Upper Limits on the Photon Rest Mass. Soviet Physics-Uspekhi, 19, 624-626.

[4]   Proca, A. (1936) Sur les Photons et les Particules charge pure. Comptes Rendus de l’Academie des Sciences, 203, 709-711.

[5]   Freund, P.G.O., Maheshwari, A. and Schonberg, E. (1969) Finite Range Gravitation. Astrophysical Journal, 157, 857-867.

[6]   Logunov, А.А. (2006) The Relativistic Theory of Gravitation. Nauka, Moscow (in Russian).
Logunov, А.А. (2002) The Theory of Gravity.

[7]   Gershtein, S.S., Logunov, А.А., Mestvirishvili, M.A. and Tkachenko, N.P. (2005) The Evolution of the Universe in the Field Theory of Gravitation. Physics of Particles and Nuclei, 36, 1003-1050.

[8]   Visser, M. (1999) Mass for the Graviton. General Relativity and Gravitation, 30, 1727-1728.

[9]   Rubakov, V.A. and Tinyakov, P.G. (2008) Infrared-Modified Gravities and Massive Gravitons. Physics-Uspekhi, 51, 759-792.

[10]   Babak, S.V. and Grishchuk, L.P. (2003) Finate-Range Gravity and Its Role in Gravitational Waves, Black Holes and Cosmology. International Journal of Modern Physics, D12, 1905-1959.

[11]   Hinterbichler, K. (2012) Theoretical Aspects of Massive Gravity. Review of Modern Physics, 84, 671-710.

[12]   de Rham, C. (2014) Massive Gravity. Living Reviews in Relativity, 17, 7-189.

[13]   Landau, L.D. and Lifshitz, E.M. (1980) The Classical Theory of Fields. 4th Edition, Butterworth-Heinemann, Elsevier, Oxford.

[14]   Karachentsov, I.D., Kashibadze, O.G., Makarov, D.I. and Tully, R.B. (2009) The Hubble Flow around the Local Group. Monthly Notices of Royal Astronomical Society, 393, 1265-1284.

[15]   Chugreev, Yu.V., Mestvirishvili, M.A. and Modestov, K.A. (2007) Quintessence Scalar Field in the Relativistic Theory of Gravity. Theoretical and Mathematical Physics, 152, 1342-1350.

[16]   Chernin, A., Teerikorpi, P. and Baryshev, Yu. (2003) Why Is the Hubble Flow So Quiet? Advanced Space Researches, 31, 479-497.

[17]   Chernin, A.D. (2008) Dark Energy and Universal Antigravitation. Physics-Uspekhi, 51, 253-282.

[18]   Chernin, A.D. (2013) Dark Energy in the Nearby Universe: HST Data, Nonlinear Theory and Computer Simulations. Physics-Uspekhi, 56, 704-709.

[19]   Chugreev, Yu.V. (2016) Dark Energy and the Mass of Graviton in Nearby Universe. Physics of Particles and Nuclei Letters, 13, 38-45.

[20]   Planck Collaboration (2015) Planck 2015 Results. Cosmological Parameters.