JAMP  Vol.4 No.4 , April 2016
A Method for the Solution of the 2D-Oswatitsch Equations
Abstract: Corresponding to Oswatitsch’s Mach number independence principle the Mach number of hypersonic inviscid flows, , does not affect components of various non-dimensional formulations such as velocity and density, pressure coefficients and Mach number behind a strong shock. On this account, the principle is significant in the development process for hypersonic vehicles. Oswatitsch deduced a system of partial differential equations which describes hypersonic flow. These equations are the basic gasdynamic equations as well as Crocco’s theorem which are reduced for the case of very high Mach numbers, . Their numerical solution can not only result in simplified algorithms prospectively utilized to describe the flow around bodies flying mainly in the lower stratosphere with very high Mach numbers. It also offers a deeper understanding of similarity effects for hypersonic flows. In this paper, a solution method for Oswatisch’s equations for perfect gas, based on a 4-step Runge-Kutta-algorithm, is presented including a fast shock-fitting procedure. An analysis of numerical stability is followed by a detailed comparison of results for different Mach numbers and ratios of the specific heats.
Cite this paper: Lorenz, V. and Mundt, C. (2016) A Method for the Solution of the 2D-Oswatitsch Equations. Journal of Applied Mathematics and Physics, 4, 844-856. doi: 10.4236/jamp.2016.44092.

[1]   Abbett, M.J. (1973) Boundary Condition Calculation Procedures for Inviscid Supersonic Flow fields. Proceedings of the 1st AIAA Computational Fluid Dynamics Conference, 153-172.

[2]   Anderson, J.D. (1989) Hypersonic and High-Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics, Stanford University, Stanford.

[3]   Anderson, J.D. (1990) Modern Compressible Flow with Historical Perspective of Aeronautical and Aerospace Engineering. McGraw-Hill, New York.

[4]   Bruneau, C.-H. (1991) Computation of Hypersonic Flows Round a Blunt Body. Computers & Fluids, 19, 231-242.

[5]   Hirsch, C. (1990) Numerical Computation of Internal and External Flows: Computational Methods for Inviscid and Viscous Flow. Wiley, New York.

[6]   Hirsch, C. (1991) Numerical Computation of Internal and External Flows: Fundamentals of Numerical Discretization. Wiley, New York.

[7]   Hirschel, E.H. (2005) Basics of Aerothermodynamics. Springer, Berlin, Heidelberg.

[8]   Hirschel, E.H. (1991) Viscous Effects. Space Course, 12, 1-35.

[9]   Jameson, A., Schmidt, W., Turkel, E., et al. (1981) Numerical Solutions of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes. AIAA Paper, 1981, 1259.

[10]   Kliche, D., Mundt, C. and Hirschel, E.H. (2011) The Hypersonic Mach Number Independence Principle in the Case of Viscous Flow. Shock Waves, 21, 307-314.

[11]   Lecheler, S. (1992) Ein voll-implizites 3-D Euler-Verfahren zur genauen und schnellkonvergenten Strömungsberechnung in Schaufelreihen von Turbomaschinen. PhD Thesis, Universität, Stuttgart.

[12]   Lorenz, V. (2015) Numerische Lösung und Analyse der Oswatitsch’schen Gleichungen für Hyperschallströmungen. PhD Thesis, Universität der Bundeswehr, München.

[13]   Matthews, R.K. (1991) Hypersonic Wind Tunnel Testing. In: Ballmann, J., Bertin, J. and Periaux, J., Eds., Advances in Hypersonics—Modeling Hypersonic Flows, Birkhäuser Verlag GmbH, 73-105.

[14]   Mundt, C. (1992) Rechnerische Simulation reibungsbehafteter Strungen im chemischen Nichtgleichgewicht. PhD Thesis, Technische Universitä, Technische.

[15]   Oswatitsch, K. (1951) Ähnlichkeitsgesetze für Hyperschallströmungen. Zeitschrift für Angewandte Mathematik und Physik (ZAMP). (2), 249-264, July 1951.

[16]   Pulliam, T.H. (1986) Artificial Dissipation Models for the Euler Equations. AIAA, 24, 1931-1940.

[17]   Spangler, R. (2010) Numerische Lösung der zweidimensionalen Oswatitsch’schen Gleichungen für machzahlunabhängigen Strömungen. Master Thesis, Hochschule, Regensburg.