Back
 JWARP  Vol.8 No.4 , April 2016
Data Mining of Historic Hydrogeological and Socioeconomic Data Bases of the Toluca Valley, Mexico
Abstract: In this paper we used several data mining techniques to analyze the coevolution of hydrogeological and socioeconomical data for the Toluca Valley in Mexico. We found non trivial relations between two historic data bases that make clear that groundwater and economy may be much more linked than it was thought before. In particular, we found that hydrogeological data trends change during economical crisis and election years in Mexico. This shows that different macroeconomical policies implemented by several administrations have a direct impact in the way groundwater is used. We also found that hydrogoelogical data evolve in the direction of population transformation from rural to urban, which could represent a whole paradigm shift in groundwater management with profound repercussions in policy making.
Cite this paper: López-Corona, O. , Fuentes, O. , Morales-Casique, E. , Longoria, P. , Moran, T. (2016) Data Mining of Historic Hydrogeological and Socioeconomic Data Bases of the Toluca Valley, Mexico. Journal of Water Resource and Protection, 8, 522-533. doi: 10.4236/jwarp.2016.84044.
References

[1]   Ikoma, E., Taniguchi, K., Koike, T. and Kitsuregawa, M. (2006) Development of a Data Mining Application for Huge Scale Earth Environmental Data Archives. International Journal of Computational Science and Engineering, 2, 262-270.
http://dx.doi.org/10.1504/IJCSE.2006.014765

[2]   Cios, K.J., Pedrycz, W. and Swiniarski, R.W. (1998) Data Mining and Knowledge Discovery. Springer US, 1-26.

[3]   Hand, D. (1998) Data Mining: Statistics and More? The American Statistician, 52, 112-118.

[4]   Kantardzic, M. (2003) Data Mining: Concepts, Models, Methods, and Algorithms. John Wiley & Sons, Hoboken.

[5]   Baldi, P. and Brunak, S. (1998) Bioinformatics—The Machine Learning Approach. MIT Press, Cambridge, MA.

[6]   Anandhavalli, M., Ghose, M. and Gauthaman, K. (2010) Mining Spatial Gene Expression Data Using Negative Association Rules. arXiv:1001.1991v1 [cs.DB]

[7]   Birkholtz, L., Bastien, O., Wells, G., Grando, D., Joubert, F., Kasam, V., Zimmermann, M., Ortet, P., Jacq, N., Roy, S., Hoffmann-Apitius, M., Breton, V., Louw, A. and Maréchal, E. (2006) Integration and Mining of Malaria Molecular, Functional and Pharmacological Data: How Far Are We from a Chemogenomic Knowledge Space? arXiv:q-bio/ 0611053v1 [q-bio.QM]

[8]   Shan, Y. (2006) Genome-Wide EST Data Mining Approaches to Resolving Incongruence of Molecular Phylogenies. arXiv:q-bio/0609004v2 [q-bio.GN]

[9]   Fayyad, U., Djorgovski, S. and Weir, N. (1996) Automating the Analysis and Cataloging of Sky Surveys. In: Fayyad, U.M., et al., Eds., Advances in Knowledge Discovery and Data Mining, AAIT Press and MIT Press, 471.

[10]   Ball, N. and Brunner, R. (2009) Data Mining and Machine Learning in Astronomy. arXiv:0906.2173v1 [astro-ph.IM]

[11]   Borne, K. (2009) Scientific Data Mining in Astronomy. arXiv:0911.0505v1 [astro-ph.IM].

[12]   Vaduvescu, O., Curelaru, L., Birlan, M., Bocsa, G., Serbanescu, L., Tudorica, A. and Berthier, J. (2009) EURONEAR: Data Mining of Asteroids and Near Earth Asteroids. Astronomische Nachrichten, 330, 698-707.
http://dx.doi.org/10.1002/asna.200811198

[13]   Karimabadi, H., Sipes, T., White, H., Marinucci, M., Dmitriev, A., Chao, J., Driscoll, J. and Balac, N. (2007) Data Mining in Space Physics: MineTool Algorithm. Journal of Geophysical Research, 112, A11215.
http://dx.doi.org/10.1029/2006ja012136

[14]   Lavraä, N., Keravnou, E. and Zupan, E. (1997) Intelligent Data Analysis in Medicine and Pharmacology. Kluwer, Alphen aan den Rijn.

[15]   Kormushev, P. (2009) Visual Approach for Data Mining on Medical Information Databases Using Fastmap Algorithm. arXiv:0904.0313v1 [cs.IR].

[16]   Yang, Y., Cai, X. and Herricks, E. (2008) Identification of Hydrologic Indicators Related to Fish Diversity and Abundance: A Data Mining Approach for Fish Community Analysis. Water Resources Research, 44, W04412.
http://dx.doi.org/10.1029/2006wr005764

[17]   Bui, E., Henderson, B. and Viergever, K. (2009) Using Knowledge Discovery with Data Mining from the Australian Soil Resource Information System Database to Inform Soil Carbon Mapping in Australia. Global Biogeochemical Cycles, 23, GB4033.
http://dx.doi.org/10.1029/2009gb003506

[18]   Dhanya, C. and Nagesh, D. (2009) Data Mining for Evolution of Association Rules for Droughts and Floods in India Using Climate Inputs. Journal of Geophysical Research, 114, D02102.
http://dx.doi.org/10.1029/2008jd010485

[19]   Ailamaki, A., Faloutsos, C., Fischbeck, P., Small, M. and Van Briesen, J. (2003) An Environmental Sensor Network to Determine Drinking Water Quality and Security. ACM SIGMOD Record, 32, 47-52.

http://dx.doi.org/10.1145/959060.959069

[20]   Ekasingh, B., Ngamsomsuke, K., Letcher, R. and Spate, J. (2005) A Data Mining Approach to Simulating Farmers’ Crop Choices for Integrated Water Resources Management. Journal of Environmental Management, 77, 315-325.
http://dx.doi.org/10.1016/j.jenvman.2005.06.015

[21]   Scaringella, A. (1999) A Data Mining Application for Monitoring Environmental Risks. In: Perner, P. and Petrou, M., Eds., Machine Learning and Data Mining in Pattern Recognition, MLDM’99, Lecture Notes in Computer Science, Vol. 1715, Springer, Berlin, 209-215.
http://dx.doi.org/10.1007/3-540-48097-8_17

[22]   INEGI (1994) Estadísticas de Toluca. Cuaderno Estadístico Municipal. Estado de Mexico. pp. 1, 9.

[23]   INEGI (1996) Conteo 1995 Estados Unidos Mexicanos, resultados preliminares.

[24]   EDOMEX (2008) Enciclopedia de los Municipios de Mexico Estado de Mexico Toluca de Lerdo.
http://inafed.gob.mx/work/enciclopedia/EMM15mexico/index.html

[25]   Comisión Nacional del Agua Subdirección General Técnica Gerencia de Aguas Subterráneas Subgerencia de Evaluación y Modelación Hidrogeológica. Determinación de la disponobilidad de agua en el acuífero Valle de Toluca, Estado de México. CNA, 2002.

[26]   Fayyad, U., Piatetsky-Shapiro, G. and Smith, P. (1996) From Data Mining to Knowledge Discovery in Databases. AI Magazine, 17, 37-54.

[27]   Fellegi, I. and Sunter, A. (1969) A Theory for Record Linkage. Journal of the American Statistical Association, 64, 1183-1210.
http://dx.doi.org/10.1080/01621459.1969.10501049

[28]   Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. (2009) The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter, 11, 10-18.
http://dx.doi.org/10.1145/1656274.1656278

[29]   Witten, H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, Burlington.

[30]   Goicoechea, J. (1996) Modernización y estancamiento: Paradojas del sector agropecuario en México. Comercio Exterior.

 
 
Top