Back
 AiM  Vol.6 No.5 , April 2016
Lipopolysaccharides in Cyanobacteria: A Brief Overview
Abstract: Cyanobacteria are an interesting group of photosynthetic prokaryotes with a great potential in drug discovery and scientific research. Due to their high degree of diversification, they have been able to adapt to almost all ecological niches. Similarly to Gram-negative bacteria, cyanobacterial cell wall contains Lipopolysaccharides (LPSs) in the outer membrane layer. LPSs are molecules that possess the ability to elicit an innate immune response via Toll-like receptor 4 (TLR-4) activation. Cyanobacterial LPSs have been studied to a minor extent compared to Gram-negative bacterial LPSs. However, available data revealed important differences between the LPSs of these two groups of organisms, both in term of structure and biological activity. This review summarizes the current knowledge about cyanobacterial LPSs, highlighting their peculiarity and their potentiality compared to more characterized bacterial LPSs.
Cite this paper: Gemma, S. , Molteni, M. and Rossetti, C. (2016) Lipopolysaccharides in Cyanobacteria: A Brief Overview. Advances in Microbiology, 6, 391-397. doi: 10.4236/aim.2016.65038.
References

[1]   Dixit, R.B. and Suseela, M.R. (2013) Cyanobacteria: Potential Candidates for Drug Discovery. Antonie van Leeuwenhoek, 103, 947-961.
http://dx.doi.org/10.1007/s10482-013-9898-0

[2]   Carillo, S., Pieretti, G., Bedini, E., Parrilli, M., Lanzetta, R. and Corsaro, M.M. (2014) Structural Investigation of the Antagonist LPS from the Cyanobacterium Oscillatoria planktothrix FP1. Carbohydrate Research, 388, 73-80.
http://dx.doi.org/10.1016/j.carres.2013.10.008

[3]   Durai, P., Batool, M. and Choi, S. (2015) Structure and Effects of Cyanobacterial Lipopolysaccharides. Marine Drugs, 13, 4217-4230.
http://dx.doi.org/10.3390/md13074217

[4]   Giovannardi, S., Pollegioni, L., Pomati, F., Rossetti, C., Sacchi, S., Sessa, L., et al. (1999) Toxic Cyanobacterial Blooms in Lake Varese (Italy): A Multidisciplinary Approach. Environmental Toxicology, 14, 127-134.
http://dx.doi.org/10.1002/(SICI)1522-7278(199902)14:1<127::AID-TOX16>3.0.CO;2-P

[5]   Mayer, A.M.S., Clifford, J.A., Aldulescu, M., Frenkel, J.A., Holland, M.A., Hall, M.L., et al. (2011) Cyanobacterial Microcystis aeruginosa Lipopolysaccharide Elicits Release of Superoxide Anion, Thromboxane B2, Cytokines, Chemokines, and Matrix Metalloproteinase-9 by Rat Microglia. Toxicological Sciences, 121, 63-72.
http://dx.doi.org/10.1093/toxsci/kfr045

[6]   Raetz, C.R.H. and Whitfield, C. (2002) Lipopolysaccharide Endotoxins. Annual Review of Biochemistry, 71, 635-700.
http://dx.doi.org/10.1146/annurev.biochem.71.110601.135414

[7]   Beutler, B. and Rietschel, E.T. (2003) Innate Immune Sensing and Its Roots: The Story of Endotoxin. Nature Reviews, Immunology, 3, 169-176.
http://dx.doi.org/10.1038/nri1004

[8]   Hoiczyk, E. and Hansel, A. (2000) Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. Journal of Bacteriology, 182, 1191-1199.
http://dx.doi.org/10.1128/JB.182.5.1191-1199.2000

[9]   Caroff, M., Karibian, D., Cavaillon, J.M. and Haeffner-Cavaillon, N. (2002) Structural and Functional Analyses of Bacterial Lipopolysaccharides. Microbes and Infection, 4, 915-926.
http://dx.doi.org/10.1016/S1286-4579(02)01612-X

[10]   Caroff, M. and Karibian, D. (2003) Structure of Bacterial Lipopolysaccharides. Carbohydrate Research, 338, 2431-2447.
http://dx.doi.org/10.1016/j.carres.2003.07.010

[11]   Dixon, D.R. and Darveau, R.P. (2005) Lipopolysaccharide Heterogeneity: Innate Host Responses to Bacterial Modification of Lipid A Structure. Journal of Dental Research, 84, 584-595.
http://dx.doi.org/10.1177/154405910508400702

[12]   Snyder, D.S., Brahamsha, B., Azadi, P. and Palenik, B. (2009) Structure of Compositionally Simple Lipopolysaccharide from Marine Synechococcus. Journal of Bacteriology, 191, 5499-5509.
http://dx.doi.org/10.1128/JB.00121-09

[13]   Akira, S. and Takeda, K. (2004) Toll-Like Receptor Signalling. Nature Reviews Immunology, 4, 499-511.

[14]   Stewart, I., Schluter, P.J. and Shaw, G.R. (2006) Cyanobacterial Lipopolysaccharides and Human Health—A Review. Environmental Health, 5, 7.
http://dx.doi.org/10.1186/1476-069X-5-7

[15]   Raziuddin, S., Siegelman, H.W. and Tornabene, T.G. (1983) Lipopolysaccharides of the Cyanobacterium Microcystis aeruginosa. The FEBS Journal, 137, 333-336.
http://dx.doi.org/10.1111/j.1432-1033.1983.tb07833.x

[16]   Martin, C., Codd, G.A., Siegelman, H.W. and Weckesser, J. (1989) Lipopolysaccharides and Polysaccharides of the Cell Envelope of Toxic Microcystis aeruginosa Strains. Archives of Microbiology, 152, 90-94.
http://dx.doi.org/10.1007/BF00447017

[17]   Fujii, M., Sato, Y., Ito, H., Masago, Y. and Omura, T. (2012) Monosaccharide Composition of the Outer Membrane Lipopolysaccharide and O-Chain from the Freshwater Cyanobacterium Microcystis aeruginosa NIES-87. Journal of Applied Microbiology, 113, 896-903.
http://dx.doi.org/10.1111/j.1365-2672.2012.05405.x

[18]   Weise, G., Drews, G., Jann, B. and Jann, K. (1970) Identification and Analysis of a Lipopolysaccharide in Cell Walls of the Blue-Green Alga Anacystis nidulans. Archiv für Mikrobiologie, 71, 89-98.

[19]   Keleti, G., Sykora, J.L., Lippy, E.C. and Shapiro, M.A. (1979) Composition and Biological Properties of Lipopolysaccharides Isolated from Schizothrix calcicola (Ag.) Gomont (Cyanobacteria). Applied and Environmental Microbiology, 38, 471-477.

[20]   Keleti, G. and Sykora, J.L. (1982) Production and Properties of Cyanobacterial Endotoxins. Applied and Environmental Microbiology, 43, 104-109.

[21]   Buttke, T.M. and Ingram, L.O. (1975) Comparison of Lipopolysaccharides from Agmenellum quadruplicatum to Escherichia coli and Salmonella typhimurium by Using Thin-Layer Chromatography. Journal of Bacteriology, 124, 1566-1573.

[22]   Tornabene, T., Bourne, T., Raziuddin, S. and Ben-Amotz, A. (1985) Lipid and Lipopolysaccharide Constituents of Cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Marine Ecology-Progress Series, 22, 121-125.
http://dx.doi.org/10.3354/meps022121

[23]   Katz, A., Weckesser, J., Drews, G. and Mayer, H. (1977) Chemical and Biological Studies on the Lipopolysaccharide (O-Antigen) of Anacystis nidulans. Archives of Microbiology, 113, 247-256.
http://dx.doi.org/10.1007/BF00492032

[24]   Mikheyskaya, L.V., Ovodova, R.G. and Ovodov, Y.S. (1977) Isolation and Characterization of Lipopolysaccharides from Cell Walls of Blue-Green Algae of the Genus Phormidium. Journal of Bacteriology, 130, 1-3.

[25]   Mohamed, Z.A. (2008) Toxic Cyanobacteria and Cyanotoxins in Public Hot Springs in Saudi Arabia. Toxicon, 51, 17-27.
http://dx.doi.org/10.1016/j.toxicon.2007.07.007

[26]   Rapala, J. (2002) Endotoxins Associated with Cyanobacteria and Their Removal during Drinking Water Treatment. Water Research, 36, 2627-2635.
http://dx.doi.org/10.1016/S0043-1354(01)00478-X

[27]   Bernardová, K., Babica, P., Marsálek, B. and Bláha, L. (2008) Isolation and Endotoxin Activities of Lipopolysaccharides from Cyanobacterial Cultures and Complex Water Blooms and Comparison with the Effects of Heterotrophic Bacteria and Green Alga. Journal of Applied Toxicology, 28, 72-79.
http://dx.doi.org/10.1002/jat.1257

[28]   Macagno, A., Molteni, M., Rinaldi, A., Bertoni, F., Lanzavecchia, A., Rossetti, C., et al. (2006) A Cyanobacterial LPS Antagonist Prevents Endotoxin Shock and Blocks Sustained TLR4 Stimulation Required for Cytokine Expression. The Journal of Experimental Medicine, 203, 1481-1492.
http://dx.doi.org/10.1084/jem.20060136

[29]   Jemmett, K., Macagno, A., Molteni, M., Heckels, J.E., Rossetti, C. and Christodoulides, M. (2008) A Cyanobacterial Lipopolysaccharide Antagonist Inhibits Cytokine Production Induced by Neisseria meningitidis in a Human Whole-Blood Model of Septicemia. Infection and Immunity, 76, 3156-3163.
http://dx.doi.org/10.1128/IAI.00110-08

[30]   Oliver, R., Staples, K.J., Heckels, J., Rossetti, C., Molteni, M. and Christodoulides, M. (2012) Coadministration of the Cyanobacterial Lipopolysaccharide Antagonist CyP with Antibiotic Inhibits Cytokine Production by an in Vitro Meningitis Model Infected with Neisseria meningitidis. Journal of Antimicrobial Chemotherapy, 67, 1145-1154.
http://dx.doi.org/10.1093/jac/dks031

[31]   Thorgersen, E.B., Macagno, A., Rossetti, C. and Mollnes, T.E. (2008) Cyanobacterial LPS Antagonist (CyP)—A Novel and Efficient Inhibitor of Escherichia coli LPS-Induced Cytokine Response in the Pig. Molecular Immunology, 45, 3553-3557.
http://dx.doi.org/10.1016/j.molimm.2008.05.005

[32]   Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A.M., et al. (2010) Toll-Like Receptor 4 and High-Mobility Group Box-1 Are Involved in Ictogenesis and Can Be Targeted to Reduce Seizures. Nature Medicine, 16, 413-419.
http://dx.doi.org/10.1038/nm.2127

[33]   DePaola, M., Mariani, A., Bigini, P., Peviani, M., Ferrara, G., Molteni, M., et al. (2012) Neuroprotective Effects of Toll-Like Receptor 4 Antagonism in Spinal Cord Cultures and in a Mouse Model of Motor Neuron Degeneration. Molecular Medicine, 18, 971-981.

[34]   Mayer, A.M.S., Murphy, J., MacAdam, D., Osterbauer, C., Baseer, I., Hall, M.L., et al. (2016) Classical and Alternative Activation of Cyanobacterium Oscillatoria sp. Lipopolysaccharide-Treated Rat Microglia in Vitro. Toxicological Sciences, 149, 484-495.
http://dx.doi.org/10.1093/toxsci/kfv251

 
 
Top