Back
 JAMP  Vol.4 No.4 , April 2016
On Henstock-Stieltjes Integrals of Interval-Valued Functions and Fuzzy-Number-Valued Functions
Abstract: In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
Cite this paper: Hamid, M. and Elmuiz, A. (2016) On Henstock-Stieltjes Integrals of Interval-Valued Functions and Fuzzy-Number-Valued Functions. Journal of Applied Mathematics and Physics, 4, 779-786. doi: 10.4236/jamp.2016.44088.
References

[1]   Henstock, R. (1963) Theory of Integration. Butterworth, London.

[2]   Lee, P.-Y. (1989) Lanzhou Lectures on Henstock Integration. World Scientific, Singapore.
http://dx.doi.org/10.1142/0845

[3]   Wu, C.X. and Gong, Z.T. (2000) On Henstock Integrals of Interval-Valued Functions and Fuzzy-Valued Functions. Fuzzy Sets and Systems, 115, 377-391.
http://dx.doi.org/10.1016/S0165-0114(98)00277-2

[4]   Yoon, J.H. (2016) On Henstock-Stieltjes Integrals of Interval-Valued Functions On time Scales. Journal of the Chungcheong Mathematical Society, 29, 109-115.

[5]   Lim, J.S., Yoon, J. H. and Eun, G. S. (1998) On Henstock Stieltjes Integral. Kangweon-Kyungki Math, 6, 87-96.

[6]   Nanda, S. (1989) On Integration of Fuzzy Mappings. Fuzzy Sets and Systems, 32, 95-101.
http://dx.doi.org/10.1016/0165-0114(89)90090-0

[7]   Wu, C.X. and Ma, M. (1991) Embedding Problem of Fuzzy Number Spaces: Part I. Fuzzy Sets and Systems, 44, 33-38.
http://dx.doi.org/10.1016/0165-0114(91)90030-T

[8]   Wu, C.X. and Ma, M. (1992) Embedding Problem of Fuzzy Number Spaces: Part II. Fuzzy Sets and Systems, 45, 189-202.
http://dx.doi.org/10.1016/0165-0114(92)90118-N

[9]   Luo, C.Z. and Wang, D.M. (1983) Extension of the Integral of Interval-Valued Function and the Integral of Fuzzy-Valued Function. Fuzzy Math, 3, 45-52.

 
 
Top