Back
 MSA  Vol.7 No.4 , April 2016
Development of Biobased Poly(Lactic Acid)/Epoxidized Natural Rubber Blends Processed by Electrospinning: Morphological, Structural and Thermal Properties
Abstract: This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). SEM images showed the reduction in fiber size with ENR content of up to 25% in the mixture PLA/ENR. FTIR analysis revealed a possible interaction between carboxylic group of PLA and epoxi group of ENR. Thermal analysis showed the increase of the crystallinity fraction with ENR content and a decrease in thermal stability of eletrospun mats with the addition of ENR. The dynamic mechanical properties showed an enhancement of the stiffness of PLA/ENR blends with the increase of ENR content, which can support the production of interesting materials for tissue engineering based on renewable and biocompatible polymers. The reported properties indicate the possibility to use such fiber mats as potential materials in tissue engineering.
Cite this paper: Cosme, J. , Silva, V. , Nunes, R. and Picciani, P. (2016) Development of Biobased Poly(Lactic Acid)/Epoxidized Natural Rubber Blends Processed by Electrospinning: Morphological, Structural and Thermal Properties. Materials Sciences and Applications, 7, 210-219. doi: 10.4236/msa.2016.74021.
References

[1]   Li, N., Qin, X.-H., Lin, L. and Wang, S.-Y. (2008) The Effects of Spinning Conditions on the Morphology of Electrospun Jet and Nonwoven Membrane. Polymer Engineering & Science, 48, 2362-2366. http://dx.doi.org/10.1002/pen.21188

[2]   Liu, H., Wang, S. and Qi, N. (2012) Controllable Structure Properties and Degradation of the Electrospun PLGA/PLA- Blended Nanofibrous Scaffolds. Journal of Applied Polymer Science, 125, E468-E473. http://dx.doi.org/10.1002/app.36757

[3]   Kancheva, M., Toncheva, A., Manolova, N. and Rashkov, I. (2015) Enhancing the Mechanical Properties of Electrospun Polyester Mats by Heat Treatment. Express Polymer Letters, 9, 49-65. http://dx.doi.org/10.3144/expresspolymlett.2015.6

[4]   Chew, S.Y., Wen, J., Yim, E.K.F. and Leong, K.W. (2005) Sustained Release of Proteins from Electrospun Biodegradable Fibers. Biomacromolecules, 6, 2017-2024. http://dx.doi.org/10.1021/bm0501149

[5]   Agarwal, S., Wendorff, J.H. and Greiner, A. (2008) Use of Electrospinning Technique for Biomedical Applications. Polymer, 49, 5603-5621. http://dx.doi.org/10.1016/j.polymer.2008.09.014

[6]   Kanani, A.G. and Bahrami, S.H. (2010) Review on Electrospun Nanofibers Scaffold and Biomedical Applications. Trends in Biomaterials and Artificial Organs: An International Journal, 24, 93-5621.

[7]   Yang, F., Murugan, R., Wang, S. and Ramakrishna, S. (2005) Electrospinning of Nano/Microscale Poly(L-lactic acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials, 26, 2603-2610. http://dx.doi.org/10.1016/j.biomaterials.2004.06.051

[8]   Wang, X.Y., Drew, C., Lee, S.H., Senecal, K.J., Kumar, J. and Samuelson, L.A. (2002) Electrospun Nanofibrous Membranes for Highly Sensitive Optical Sensors. Nano Letters, 2, 1273-1275. http://dx.doi.org/10.1021/nl020216u

[9]   Schreuder-Gibson, H., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans, W., Ziegler, D. and Tsai, P.P.J. (2002) Protective Textile Materials Based on Electrospun Nanofibers. Journal of Advanced Materials, 34, 44-55.

[10]   Yun, K.M., Hogan, C.J., Matsubayashi, Y., Kawabe, M., Iskandar, F. and Okuyama, K. (2007) Nanoparticle Filtration by Electrospun Polymer Fibers. Chemical Engineering Science, 62, 4751-4759. http://dx.doi.org/10.1016/j.ces.2007.06.007

[11]   Khil, M., Cha, D., Kim, H., Kim, I. and Bhattarai, N. (2003) Electrospun Nanofibrous Poly-Urethane Membrane as Wound Dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 67B, 675-679. http://dx.doi.org/10.1002/jbm.b.10058

[12]   Kenawy, E.-R., Bowlin, G.L., Mansfield, K., Layman, J., Simpson, D.G., Sanders, E.H. and Wnek, G.E.J. (2002) Release of Tetracycline Hydrochloride from Electrospun Poly(ethylene-co-vinylacetate) Poly(lactic acid) and a Blend. Journal of Control Release, 81, 57-64. http://dx.doi.org/10.1016/S0168-3659(02)00041-X

[13]   Casasola, R., Thomas, N.L., Trybala, A. and Georgiadou, S. (2014) Effect of Different Solvent Systems on Fibre Morphology and Diameter. Polymer, 55, 4728-4737. http://dx.doi.org/10.1016/j.polymer.2014.06.032

[14]   Gaudio, C.D., Ercolani, E., Nanni, F. and Bianco, A. (2011) Assessment of Poly(?-caprolactone)/Poly(3-hydroxybu- tyrate-co-3-hydroxyvalerate) Blends Processed by Solvent Casting and Electrospinning. Materials Science and Engineering: A, 528, 1764-1772. http://dx.doi.org/10.1016/j.msea.2010.11.012

[15]   Doshi, J. and Reneker, D.H.J. (1995) Electrospinning Process and Applications of Electrospun Fibers. Journal of Electrostatics, 35, 151-160. http://dx.doi.org/10.1016/0304-3886(95)00041-8

[16]   Zakaria, Z., Islam, M.S., Hassan, A., Haafiz, M.K.M., Arjmandi, R., Inuwa, I.M. and Hasan, M. (2013) Mechanical Properties and Morphological Characterization of PLA/Chitosan/Epoxidized Natural Rubber Composites. Advances in Materials Science and Engineering, 2013, Article ID: 629092. http://dx.doi.org/10.1155/2013/629092

[17]   Zhang, Q., Mochalin, V.N., Neitzel, I., Knoke, I.Y., Han, J., Klug, C.A., Zhou, J.G. and Lelkes, P.I. and Gogotsi, Y. (2011) Fluorescent PLLA-Nanodiamond Composites for Bone Tissue Engineering. Biomaterials, 32, 87-94. http://dx.doi.org/10.1016/j.biomaterials.2010.08.090

[18]   Anaraki, N.A., Rad, L.R., Irani, M. and Haririan, I. (2015) Fabrication of PLA/PEG/MWCNT Electrospun Nanofibrous Scaffolds for Anticancer Drug Delivery. Journal of Applied Polymer Science, 132, 41286.

[19]   Karuppuswamya, P., Venugopala, J.R., Navaneethana, B., Laivaa, A.L. and Ramakrishnaa, S. (2015) Polycaprolactone Nanofibers for the Controlled Release of Tetracycline Hydrochloride. Materials Letters, 141, 180-186. http://dx.doi.org/10.1016/j.matlet.2014.11.044

[20]   Park, K., Kang, H.K., Lee, S.J., Min, B.M. and Park, W.H. (2006) Biomimetic Nanofibrous Scaffolds: Preparation and Characterization of PGA/Chitin Blend Nanofibers. Biomacromolecules, 7, 635-643. http://dx.doi.org/10.1021/bm0509265

[21]   Hong, K.H., Woo, S.H. and Kang, T.J. (2012) In Vitro Degradation and Drug-Release Behavior of Electrospun Fibrous Webs of Poly(lactic-co-glycolic acid). Journal of Applied Polymer Science, 124, 209-214. http://dx.doi.org/10.1002/app.33357

[22]   Davi, C.P., Galdino, L.F.M.D., Borelli, P., Oliveira Jr., O.N. and Ferreira, M. (2012) Natural Rubber Latex LbL Films: Characterization and Growth of Fibroblasts. Journal of Applied Polymer Science, 125, 2137-2147. http://dx.doi.org/10.1002/app.36309

[23]   Costa, L.M.M., Mattoso, L.H.C. and Ferreira, M. (2013) Electrospinning of PCL/Natural Rubber Blends. Journal of Materials Science, 48, 8501-8508. http://dx.doi.org/10.1007/s10853-013-7667-0

[24]   Cui, W., Li, X., Zhu, X., Yu, G., Zhou, S. and Weng, J. (2006) Investigation of Drug Release and Matrix Degradation of Electrospun Poly(DL-lactide) Fibers with Paracetamol Inoculation. Biomacromolecules, 7, 1623-1629. http://dx.doi.org/10.1021/bm060057z

[25]   Kim, K., Yu, M., Zong, X., Chiu, J., Fang, D., Seo, Y.-S., Hsiao, B.S., Chu, B. and Hadjiargyrou, M. (2003) Control of Degradation Rate and Hydrophilicity in Electrospun Non-Woven Poly(DL-lactide) Nanofiber Scaffolds for Biomedical Applications. Biomaterials, 24, 4977-4985. http://dx.doi.org/10.1016/S0142-9612(03)00407-1

[26]   Fernandes, R.M.B., Visconte, L.L.Y. and Nunes, R.C.R. (2011) Curing Characteristics and Aging Properties of Natural Rubber/Epoxidized Natural Rubber and Cellulose II. International Journal of Polymeric Materials and Polymeric Biomaterials, 60, 351-364. http://dx.doi.org/10.1080/00914037.2010.531806

[27]   Zhang, C., Wang, W., Huang, Y., Pan, Y., Jiang, L., Dan, Y., Luo, Y. and Peng, Z. (2013) Thermal Mechanical and Rheological Properties of Polylactide Toughened by Expoxidized Natural Rubber. Materials and Design, 45, 198-205. http://dx.doi.org/10.1016/j.matdes.2012.09.024

[28]   Nghia, P.T., Siripitakchai, N., Klinklai, W., Saito, T., Yamamoto, Y. and Kawahara, S. (2008) Compatibility of Liquid Deproteinized Natural Rubber Having Epoxy Group (LEDPNR)/Poly(L-lactide) Blend. Journal of Applied Polymer Science, 108, 393-399. http://dx.doi.org/10.1002/app.27095

[29]   Huang, Y., Zhang, C., Pan, Y., Zhou, Y., Jiang, L. and Dan, Y. (2013) Effect of NR on the Hydrolytic Degradation of PLA. Polymer Degradation and Stability, 9, 943-950. http://dx.doi.org/10.1016/j.polymdegradstab.2013.02.018

[30]   Lim, L.T., Auras, R. and Rubino, M. (2008) Processing Technology for Poly(lactic acid). Progress in Polymer Science, 33, 820-852. http://dx.doi.org/10.1016/j.progpolymsci.2008.05.004

[31]   Soheilmoghaddama, M., Wahitb, M.U. and Akos, N.I. (2013) Regenerated Cellulose/Epoxidized Natural Rubber Blend Film. Materials Letters, 111, 221-224. http://dx.doi.org/10.1016/j.matlet.2013.08.109

[32]   Tham, W.L., Poh, B.T., Ishak, Z.A.M. and Chow, W.S. (2016) Epoxidized Natural Rubber Toughened Poly(lactic acid)/Halloysite Nanocomposites with High Activation Energy of Water Diffusion. Journal of Applied Polymer Science, 133, 42850. http://dx.doi.org/10.1002/app.42850

[33]   Bitinis, N., Verdejo, R., Cassagnau, P. and Lopez-Manchado, M.A. (2011) Structure and Properties of Polylactide/Natural Rubber Blends. Materials Chemistry and Physics, 129, 823-831. http://dx.doi.org/10.1016/j.matchemphys.2011.05.016

[34]   Picciani, P.H.S., Medeiros, E.S., Pan, Z., Wood, D.F., Orts, W.J., Mattoso, L.H.C. and Soares, B.G. (2010) Structural, Electrical, Mechanical, and Thermal Properties of Electrospun Poly(lactic acid)/Polyaniline Blend Fibers. Macromolecular Materials and Engineering, 295, 618-627. http://dx.doi.org/10.1002/mame.201000019

[35]   Tham, W.L., Poh, B.T., Ishak, Z.A.M. and Chow, W.S. (2012) Crystallization Behavior of Poly(lactic acid)/Elastomer Blends. Journal of Polymer Research, 19, 9818-9830. http://dx.doi.org/10.1007/s10965-011-9818-9

[36]   Suryanegara, L., Nakagaito, A.N. and Yano, H. (2009) The Effect of Crystallization of PLA on the Thermal and Mechanical Properties of Microfibrillated Cellulose-Reinforced PLA Composites. Composites Science and Technology, 69, 1187-1192. http://dx.doi.org/10.1016/j.compscitech.2009.02.022

[37]   Wahit, M.U., Hassan, A., Ibrahim, A.N., Zawawi, N.A. and Kunasegeran, K. (2015) Mechanical, Thermal and Chemical Resistance of Epoxidized Natural Rubber Toughened Polylactic Acid Blends. Sains Malaysiana, 44, 1615-1623.

[38]   Sarasua, J.-R., Prud’homme, R.E., Wisniewski, M., Le Borgne, A. and Spassky, N. (1998) Crystallization and Melting Behavior of Polylactides. Macromolecules, 3, 3895-3905. http://dx.doi.org/10.1021/ma971545p

[39]   Chow, W.S. and Lok, S.K.J. (2008) Effect of EPM-g-MAH on the Flexural and Morphological Properties of Poly(lactic acid)/Organo-Montmorillonite Nanocomposites. Journal of Thermoplastic Composite Materials, 21, 265-277. http://dx.doi.org/10.1177/0892705708089477

[40]   Goffin, A.-L., Raque, J.-M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A. and Dubois, P. (2011) From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites. Biomacromolecules, 12, 2456-2465. http://dx.doi.org/10.1021/bm200581h

[41]   Kader, M.A., Kim, K., Lee, Y.-S. and Nah, C. (2006) Preparation and Properties of Nitrile Rubber/Montmorillonite Nanocomposites via Latex Blending. Journal of Materials Science, 41, 7341-7352. http://dx.doi.org/10.1007/s10853-006-0792-2

 
 
Top