Back
 OJCE  Vol.6 No.3 , June 2016
Shape Control and Vibration Analysis of Pi-ezolaminated Plates Subjected to Electro-Mechanical Loading
Abstract: Shape control and free vibration analysis of piezolaminated plates subjected to electro mechanical loading are evaluated using finite element method. First order shear deformation theory is employed in the analysis. Both extensions as well as shear actuators are considered for piezolaminated plates. Rectangular four node isoparametric element is used in the finite element formulation. Variation of temperature is neglected for the orthotropic layers of the laminate and for piezolayer. Annular circular plates and rectangular plates with piezoelectric layers mounted and/or integrated are analysed for various parameters. Numerical results are presented for varying the actuator voltage for annular plates with different thicknesses of piezo patches. In case of rectangular plate shear actuator is considered for vibration analysis.
Cite this paper: Wankhade, R. and Bajoria, K. (2016) Shape Control and Vibration Analysis of Pi-ezolaminated Plates Subjected to Electro-Mechanical Loading. Open Journal of Civil Engineering, 6, 335-345. doi: 10.4236/ojce.2016.63028.
References

[1]   Ha, S.K., Keilers, C. and Chang, F.K. (1992) Finite Element Analysis of Composite Structures Containing Distributed Piezoceramic Sensors and Actuators. AIAA Journal, 30, 772-780.
http://dx.doi.org/10.2514/3.10984

[2]   Hwang, W.S. and Park, H.C. (1993) Finite Element Modeling of Piezoelectric Sensors and Actuators. AIAA Journal, 31, 930-937.
http://dx.doi.org/10.2514/3.11707

[3]   Li, Z. and Bainum, P.M. (1994) Vibration Control of Flexible Spacecraft Integrating a Momentum Exchange Controller and a Distributed Piezoelectric Actuator. Journal of Sound and Vibration, 177, 539-553.
http://dx.doi.org/10.1006/jsvi.1994.1450

[4]   Tzou, H.S. and Zhou, Y.H. (1995) Dynamics and Control of Non-Linear Circular Plates with Piezoelectric Actuators. Journal of Sound and Vibration, 188, 189-207.
http://dx.doi.org/10.1006/jsvi.1995.0586

[5]   Thomson, S.P. and Loughlan, J. (1995) The Active Buckling Control of Some Composite Column Using Piezoceramic Actuators. Composite Structures, 32, 59-67.
http://dx.doi.org/10.1016/0263-8223(95)00048-8

[6]   Kim, J., Varadan, V.V., Varadan, V.K. and Bao, X.Q. (1996) Finite Element Modeling of a Smart Cantilever Plate and Comparison with Experiments. Smart Materials and Structures, 5, 165-170.
http://dx.doi.org/10.1088/0964-1726/5/2/005

[7]   Batra, R.C. and Liang, X.Q. (1997) The Vibration of a Rectangular Laminated Elastic Plate with Embedded Piezoelectric Sensors and Actuators. Computers and Structures, 63, 203-216.
http://dx.doi.org/10.1016/S0045-7949(96)00349-5

[8]   Agrawal, B.N., Elshafei, M.A. and Song, G. (1997) Adaptive Antenna Shape Control Using Piezoelectric Actuators. Acru Astronautica, 40, 821-826.
http://dx.doi.org/10.1016/S0094-5765(97)00185-9

[9]   Soares, C.M.M. and Correia, V.M.F. (1999) Optimal Design of Piezolaminated Structures. Composite Structures, 47, 625-634.
http://dx.doi.org/10.1016/S0263-8223(00)00036-2

[10]   Faria, A.R. and Almeida, S.F.M. (1999) Enhancement of Pre-Buckling Behavior of Composite Beams with Geometric Imperfections Using Piezoelectric Actuators. Composites Part B, 30, 43-50.
http://dx.doi.org/10.1016/S1359-8368(98)00047-X

[11]   Sze, K.Y. and Yao, L.Q. (2000) A Hybrid Stress ANS Solid-Shell Element and Its Generalization for Smart Structure Modeling: Part I Solid Shell Element Formulation. International Journal for Numerical Methods in Engineering, 48, 545-564.
http://dx.doi.org/10.1002/(SICI)1097-0207(20000610)48:4<545::AID-NME889>3.0.CO;2-6

[12]   Wang, S.Y., Quek, S.T. and Ang, K.K. (2001) Vibration Control of Smart Piezoelectric Composite Plates. Smart Materials and Structures, 10, 637-644.
http://dx.doi.org/10.1088/0964-1726/10/4/306

[13]   Cen, S., Soh, A.K., Long, Y.Q. and Yao, Z.H. (2002) A New 4-Node Quadrilateral FE Model with Variable Electrical Degrees of Freedom for the Analysis of Piezoelectric Laminated Composite Plates. Composite Structures, 58, 583-599.
http://dx.doi.org/10.1016/S0263-8223(02)00167-8

[14]   Moita, J.M.S., Correia, I.F.P., Soares, C.M. and Soares, C.A.M. (2004) Active Control of Adaptive Laminated Structures with Bonded Piezoelectric Sensors and Actuators. Computers and Structures, 82, 1349-1358.
http://dx.doi.org/10.1016/j.compstruc.2004.03.030

[15]   Artel, J. and Becker, W. (2005) Coupled and Uncoupled Analyses of Piezoelectric Free-Edge Effect in Laminated Plates. Composite Structures, 69, 329-335.
http://dx.doi.org/10.1016/j.compstruct.2004.07.015

[16]   Oh, I.K. and Lee, I. (2006) Supersonic Flutter Suppression of Piezolaminated Cylindrical Panels Based on Multifield Layerwise Theory. Journal of Sound and Vibration, 291, 1186-1201.
http://dx.doi.org/10.1016/j.jsv.2005.07.033

[17]   Ray, M.C. and Balaji, R. (2007) Active Structural Acoustic Control of Laminated Cylindrical Panels Using Smart Damping Treatment. International Journal of Mechanical Sciences, 49, 1001-1017.
http://dx.doi.org/10.1016/j.ijmecsci.2007.02.001

[18]   Periasamy, R. (2008) Shape Control of Composite Structures with Optimally Placed Piezoelectic Patches. Ms Thesis, University of Waterloo, Ontario.

[19]   Ly, R., Rguiti, M., D’Astorg, S., Hajjaji, A., Courtois, C. and Leriche, A. (2001) Modeling and Characterization of Piezoelectric Cantilever Bending Sensor for Energy Harvesting. Sensors and Actuators A: Physical, 168, 95-100.
http://dx.doi.org/10.1016/j.sna.2011.04.020

[20]   Bajoria, K.M. and Wankhade, R.L. (2012) Free Vibration of Simply Supported Piezolaminated Composite Plates Using Finite Element Method. Advanced Materials Research, 587, 52-56.
http://dx.doi.org/10.4028/www.scientific.net/AMR.587.52

[21]   Wankhade, R.L. and Bajoria, K.M. (2013) Buckling Analysis of Piezolaminated Plates Using Higher Order Shear Deformation Theory. International Journal of Composite Materials, 3, 92-99.

[22]   Wankhade, R.L. and Bajoria, K.M. (2013) Free Vibration and Stability Analysis of Piezolaminated Plates Using Finite Element Method. Smart Materials and Structures, 22, Article ID: 125040.
http://dx.doi.org/10.1088/0964-1726/22/12/125040

[23]   Brighenti, R. (2014) Smart Behaviour of Layered Plates through the Use of Auxetic Materials. Thin walled Structures, 84, 432-442.
http://dx.doi.org/10.1016/j.tws.2014.07.017

[24]   Bajoria, K.M. and Wankhade, R.L. (2015) Vibration of Cantilever Piezolaminated Beam with Extension and Shear Mode Piezo Actuators. Proceedings of SPIE, Active and Passive Smart Structures and Integrated Systems, 9431, 943122.

[25]   Kerboua, M., Megnounif, A., Benguediab, M., Benrahou, K.H. and Kaoulala, F. (2015) Vibration Control Beam Using Piezoelectric-Based Smart Materials. Composite Structures, 123, 430-442.
http://dx.doi.org/10.1016/j.compstruct.2014.12.044

[26]   Zhang, S., Schmidt, R. and Qin, X. (2015) Active Vibration Control of Piezoelectric Bonded Smart Structures Using PID Algorithm. Chinese Journal of Aeronautics, 28, 305-313.
http://dx.doi.org/10.1016/j.cja.2014.12.005

[27]   Bendine, K. and Wankhade, R.L. (2016) Vibration Control of FGM Piezoelectric Plate Based on LQR Genetic Search. Open Journal of Civil Engineering, 6, 1-7.
http://dx.doi.org/10.4236/ojce.2016.61001

 
 
Top