ABC  Vol.6 No.2 , April 2016
A Dynamic Model for the Processive Motion of Dynein on Microtubules
Abstract: We propose a dynamic mechanism for the processive motility of dynein on microtubules (MTs). The force generated for the motion of dynein is purely mechanical in origin. When a dynein monomer binds to a MT, the AAA ring of dynein might fit into one of the trenches on the outer surface of the MT, with the linker domain leaning on the ratchet-shaped protofilament. At room temperature, the dynein molecule exhibits random thermal motion on the outer surface of the MT. The collision between the asymmetric ratchet teeth and the linker exerts a reactive impulsive force on the dynein molecule. The probability of producing an impulse with a longitudinal component pointing to either end of the MT depends on the instantaneous motion of dynein, the shape of the linker, and the mass distribution of the dynein with/without a load. In the dynamic mechanism, dynein monomers can move independently and processively toward either end of the MT. Many observations of the motility of dynein can be reproduced in a simulation system.
Cite this paper: Hsiao, Y. and Chou, Y. (2016) A Dynamic Model for the Processive Motion of Dynein on Microtubules. Advances in Biological Chemistry, 6, 43-54. doi: 10.4236/abc.2016.62006.

[1]   Vale, R.D. and Toyoshima, Y.Y. (1988) Rotation and Translocation of Microtubules in Vitro Induced by Dyneins from Tetrahymena Cilia. Cell, 52, 459-469.

[2]   Wang, Z., Khan, S. and Sheetz, M.P. (1995) Single Cytoplasmic Dynein Molecule Movements: Characterization and Comparison with Kinesin. Biophysical Journal, 69, 2011-2023.

[3]   Allan, V. (2011) Cytoplamic Dynein. Biochemical Society Transactions, 39, 1169-1178.

[4]   Cho, C. and Vale, R.D. (2012) The Mechanism of Dynein Motility: Insight from Crystal Structures of the Motor Domain. Biochimica et Biophysica Acta, 1823, 182-191.

[5]   Reck-Peterson, S.L., Yildiz, A., Carter, A.P., Gennerich, A., Zhang, N. and Vale, R.D. (2006) Single-Molecule Analysis of Dynein Processivity and Stepping Behavior. Cell, 126, 335-348.

[6]   Bhabha, G., Cheng, H.-C., Zhang, N., Moeller, A., Liao, M., Speir, J.A., Cheng, Y. and Vale, R.D. (2014) Allosteric Communication in the Dynein Motor Domain. Cell, 159, 857-868.

[7]   Gennerich, A., Carter, A.P., Reck-Peterson, S.L. and Vale, R.D. (2007) Force-Induced Bidirectional Stepping of Cytoplasmic Dynein. Cell, 131, 952-965.

[8]   Burgess, S.A., Walker, M. L., Sakakibara, H., Knight, P.J. and Oiwa, K. (2003) Dynein Structure and Power Stroke. Nature, 421, 715-718.

[9]   Roberts, A.J., Numata, N., Walker, M.L., Kato, Y.S., Malkova, B., Kon, T., Ohkura, R., Arisaka, F., Knight, P.J., Sutoh, K. and Burgess S.A. (2009) AAA+ Ring and Linker Swing Mechanism in the Dynein Motor. Cell, 136, 485-495.

[10]   Samso, M. and Koonce, M. (2004) 25 A Resolution Structure of a Cytoplasmic Dynein Motor Reveals a Seven-Member Planar Ring. Journal of Molecular Biology, 340, 1059-1072.

[11]   Schmidt, H., Gleave, E.S. and Carter, A.P. (2012) Insights into Dynein Motor Domaim Function from a 3.3-A Crystal Structure. Nature Structural & Molecular Biology, 19, 492-498.

[12]   Mizuno, N., Narita, A., Kon, T., Sutoh, K. and Kikkawa, M. (2007) Three-Dimensional Structure of Cytoplasmic Dynein Bound to Micritubuls. Proceedings of the National Academy of Sciences of the United States of America, 104, 20832-20837.

[13]   Kon, T., Oyama, T., Shimo-Kon, R., Imamula, K., Shima, T., Sutoh, K. and Kurisu, G. (2012) The 2.8 A Crystal Structure of the Dynein Motor Domain. Nature, 484, 345-351.

[14]   Chowdhury, S., Ketcham, S.A., Schroer, T.A. and Lander, G.C. (2015) Structural Organization of the Dynein-Dynactin Complex Bound to Microtubules. Nature Structural and Molecular Biology, 22, 345-350.

[15]   Qiu, W., Derr, N.D., Goodman, B.S., Villa, E., Wu, D., Shih, W. and Reck-Peterson, S.L. (2012) Dynein Achieves Processive Motion Using both Stochastic and Coordinated Stepping. Nature Structural and Molecular Biology, 19, 193-201.

[16]   DeWitt, M.A., Chang, A.Y., Combs, P.A. and Yildiz, A. (2012) Cytoplasmic Dynein Moves through Uncoordinated Stepping of the AAA+ Ring Domains. Science, 335, 221-225.

[17]   Tanenbaum, M.E., Vale, R.D. and McKenney, R.J. (2013) Cytoplasmic Dynein Crosslinks and Slides Anti-Parallel Microtubules Using Its Two Motor Domains. eLife, 2, e00943.

[18]   Ross, J.L., Wallace, K., Shuman, H., Goldman, Y.E. and Holzbaur, E.L.F. (2006) Processive Bidirectional Motion of Dynein-Dynactin Complexes in Vitro. Nature Cell Biology, 8, 562-570.

[19]   McKenney, R.J., Huynh, W., Tanenbaum, M.E., Bhabha, G. and Vale, R.D. (2014) Activation of Cytoplasmic Dynein Motility by Dynactin-Cargo Adapter Complexes. Science, 345, 337-341.

[20]   Walter, W.J., Brenner, B. and Steffen, W. (2010) Cytoplasmic Dynein Is Not a Conventional Processive Motor. Journal of Structural Biology, 170, 266-269.

[21]   Li, H., DeRosier, D.J., Nicholson, W.V., Nogales, E. and Downing, K.H. (2002) Microtubule Structure at 8 A Resolution. Structure, 10, 1317-1328.

[22]   Chou, Y.C., Hsiao, Y.-F. and To, K. (2015) Dynamic Model of the Force Driving Kinesin to Move along Microtubule-Simulation with a Model System. Physica A, 433, 66-73.

[23]   Sakakibara, H., Kojima, H., Sakai, Y., Katayama, E. and Oiwa, K. (1999) Inner-Arm Dynein c of Chlamydomonas Flagella Is a Single-Headed Processive Motor. Nature, 400, 586-590.

[24]   Jeng, P.-R., Chen, K., Hwang, G.-J., Tien, C.-M., Lien, C., To, K. and Chou, Y.C. (2011) Packaging of Granular Bead Chain. EPL (Europhysics Letters), 96, Article ID: 44005.

[25]   Chou, Y.C., Hsiao, Y.-F., Hwang, G.-J. and To, K. (2016) Torque Generation through the Random Movement of an Asymmetric Rotor: A Potential Rotational Mechanism of the γ-Subunit of F1-ATPase. Physical Review E, 93, Article ID: 022408.