[1] Sounthararajah, D. P., Loganathan, P., Kandasamy, J. and Vigneswaran, S. (2015) Adsorptive Removal of Heavy Metals from Water Using Sodium Titanate Nanofibres Loaded onto GAC in Fixed-Bed Columns. Journal of Hazardous Materials, 287, 306-316.
http://dx.doi.org/10.1016/j.jhazmat.2015.01.067
[2] Zhang, D., Zhang, C.L. and Zhou, P. (2011) Preparation of Porous Nano-Calcium Titanate Microspheres and Its Adsorption Behavior for Heavy Metal Ion in Water. Journal of Hazardous Materials, 186, 971-977.
http://dx.doi.org/10.1016/j.jhazmat.2010.11.096
[3] Razzaz, A., Ghorban, S., Hosayni, L., Irani, M. and Aliabadi, M. (2016) Chitosan Nanofibers Functionalized by TiO2 Nanoparticles for the Removal of Heavy Metal Ions. Journal of the Taiwan Institute of Chemical Engineers, 58, 333-343.
http://dx.doi.org/10.1016/j.jtice.2015.06.003
[4] Rahmani, A., Mousavi, H.Z. and Fazli, M. (2010) Effect of Nanostructure Alumina on Adsorption of Heavy Metals. Desalination, 253, 94-100.
http://dx.doi.org/10.1016/j.desal.2009.11.027
[5] Poursani, A. S., Nilchi, A., Hassani, A.H., Shariat, M. and Nouri, J. (2015) A Novel Method for Synthesis of Nano-γ-Al2O3: Study of Adsorption Behavior of Chromium, Nickel, Cadmium and Lead Ions. International Journal of Environmental Science and Technology, 12, 2003-2014.
http://dx.doi.org/10.1007/s13762-014-0740-7
[6] Mahapatra, A., Mishra, B.G. and Hota, G. (2013) Electrospun Fe2O3-Al2O3 Nanocomposite Fibers as Efficient Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution. Journal of hazardous Materials, 258-259, 116-123.
http://dx.doi.org/10.1016/j.jhazmat.2013.04.045
[7] Nilchi, A., Dehaghan, T.S. and Garmarodi, S.R. (2013) Kinetics, Isotherm and Thermodynamics for Uranium and Thorium Ions Adsorption from Aqueous Solutions by Crystalline tin Oxide Nanoparticles. Desalination, 321, 67-71.
http://dx.doi.org/10.1016/j.desal.2012.06.022
[8] Bailey, S.E., Olin, T. J., Bricka, R.M. and Adrian, D.D. (1999) A Review of Potentially Low-Cost Sorbents for Heavy Metals. Water Research, 33, 2469-2479.
http://dx.doi.org/10.1016/S0043-1354(98)00475-8
[9] Pourreza, N., Rastegarzadeh, S. and Larki, A. (2014) Simultaneous Preconcentration of Cd(II), Cu(II) and Pb(II) on Nano-TiO2 Modified with 2-Mercaptobenzothiazole Prior to Flame Atomic Absorption Spectrometric Determination. Journal of Industrial and Engineering Chemistry, 20, 2680-2686.
http://dx.doi.org/10.1016/j.jiec.2013.10.055
[10] Wang, Y.H., Lan, Y. and Huang, C. B. (2008) Adsorption Behavior of Pb and Cd Ions on Bauxite Flotation Tailings. Journal of Central South University of Technology, 2, 183-187.
http://dx.doi.org/10.1007/s11771-008-0035-6
[11] Kocabas-Atakli, Z.Ö. and Yürüm, Y. (2013) Synthesis and Characterization of Anatase Nanoadsorbent and Application in Removal of Lead, Copper and Arsenic from Water. Chemical Engineering Journal, 225, 625-635.
http://dx.doi.org/10.1016/j.cej.2013.03.106
[12] Samadi, S., Khalilian, F. and Tabatabaee, A. (2014) Synthesis, Characterization and Application of Cu-TiO2/Chitosan Nanocomposite Thin Film for the Removal of Some Heavy Metals from Aquatic Media. Journal of Nanostructure in Chemistry, 4, 1-8.
http://dx.doi.org/10.1007/s40097-014-0084-3
[13] Sreekantan, S., Zaki, S.M., Lai, C.W. and Tzu, T.W. (2014) Copper-Incorporated Titania Nanotubes for Effective Lead Ion Removal. Materials Science in Semiconductor Processing, 26, 620-631.
http://dx.doi.org/10.1016/j.mssp.2014.05.034
[14] Li, Y., Cao, L., Li, L. and Yang, C. (2015) In Situ Growing Directional Spindle TiO2 Nanocrystals on Cellulose Fibers for Enhanced Pb2+ Adsorption from Water. Journal of Hazardous Materials, 289, 140-148.
http://dx.doi.org/10.1016/j.jhazmat.2015.02.051
[15] Li, X., Liu, W. and Ni, J. (2015) Short-Cut Synthesis of Tri-Titanate Nanotubes Using Nano-Anatase: Mechanism and Application as an Excellent Adsorbent. Microporous and Mesoporous Materials, 213, 40-47.
http://dx.doi.org/10.1016/j.micromeso.2015.04.018
[16] Chandramouli, V., Anthonysamy, S., Rao, P.V., Divakar, R. and Sundararaman, D. (1996) PVA Aided Microwave Synthesis: A Novel Route for the Production of Nanocrystalline Thoria Powder. Journal of Nuclear Materials, 231, 213-220.
[17] Chandramouli, V., Anthonysamy, S., Rao, P.V., Divakar, R. and Sundararaman, D. (1996) PVA Aided Microwave Synthesis: A Novel Route for the Production of Nanocrystalline Thoria Powder. Journal of Nuclear Materials, 231, 213-220.
http://dx.doi.org/10.1016/0022-3115(96)00368-6
[18] Villarroel-Rocha, J., Barrera, D. and Sapag, K. (2014) Introducing a Self-Consistent Test and the Corresponding Modification in the Barrett, Joyner and Halenda Method for Pore-Size Determination. Microporous and Mesoporous Materials, 200, 68-78.
http://dx.doi.org/10.1016/j.micromeso.2014.08.017
[19] Asencios, Y.J. and Sun-Kou, M.R. (2012) Synthesis of High-Surface-Area γ-Al2O3 from Aluminum Scrap and Its Use for the Adsorption of Metals: Pb (II), Cd (II) and Zn (II). Applied Surface Science, 258, 10002-10011.
http://dx.doi.org/10.1016/j.apsusc.2012.06.063
[20] Sen, T.K. and Sarzali, M.V. (2008) Removal of Cadmium Metal Ion (Cd2+) from Its Aqueous Solution by Aluminium Oxide (Al2O3): A Kinetic and Equilibrium Study. Chemical Engineering Journal, 142, 256-262.
http://dx.doi.org/10.1016/j.cej.2007.12.001
[21] Li, Y., Cao, L., Li, L. and Yang, C. (2015) In Situ Growing Directional Spindle TiO2 Nanocrystals on Cellulose Fibers for Enhanced Pb2+ Adsorption from Water. Journal of Hazardous Materials, 289, 140-148.
http://dx.doi.org/10.1016/j.jhazmat.2015.02.051
[22] Aksu, Z. (2002) Determination of the Equilibrium, Kinetic and Thermodynamic Parameters of the Batch Biosorption of Nickel (II) Ions onto Chlorella vulgaris. Process Biochemistry, 38, 89-99.
http://dx.doi.org/10.1016/S0032-9592(02)00051-1
[23] Langmuir, I. (1916) Theconstitution and Fundamental Properties of Solids and Liquids. PART I. SOLIDS. Journal of the American Chemical Society, 38, 2221-2295. http://dx.doi.org/10.1021/ja02268a002
[24] El-Kamash, A.M. (2008) Evaluation of Zeolite A for the Sorptive Removal of Cs+ and Sr2+ Ions from Aqueous Solutions Using Batch and Fixed Bed Column Operations. Journal of Hazardous Materials, 151, 432-445.
http://dx.doi.org/10.1016/j.jhazmat.2007.06.009
[25] Shiri-Yekta, Z., Yaftian, M.R. and Nilchi, A. (2013) Silica Nanoparticles Modified with a Schiff Base Ligand: An Efficient Adsorbent for Th(IV), U (VI) and Eu(III) Ions. Korean Journal of Chemical Engineering, 30, 1644-1651.
http://dx.doi.org/10.1007/s11814-013-0077-9
[26] Sis, H. and Uysal, T. (2014) Removal of Heavy Metal Ions from Aqueous Medium Using Kuluncak (Malatya) Vermiculites and Effect of Precipitation on Removal. Applied Clay Science, 95, 1-8.
http://dx.doi.org/10.1016/j.clay.2014.03.018