JBiSE  Vol.9 No.5 , April 2016
Detection of Ventricular Fibrillation Using Random Forest Classifier
Abstract: Early warning and detection of ventricular fibrillation is crucial to the successful treatment of this life-threatening condition. In this paper, a ventricular fibrillation classification algorithm using a machine learning method, random forest, is proposed. A total of 17 previously defined ECG feature metrics were extracted from fixed length segments of the echocardiogram (ECG). Three annotated public domain ECG databases (Creighton University Ventricular Tachycardia database, MIT-BIH Arrhythmia Database and MIT-BIH Malignant Ventricular Arrhythmia Database) were used for evaluation of the proposed method. Window sizes 3 s, 5 s and 8 s for overlapping and non-overlapping segmentation methodologies were tested. An accuracy (Acc) of 97.17%, sensitivity (Se) of 95.17% and specificity (Sp) of 97.32% were obtained with 8 s window size for overlapping segments. The results were benchmarked against recent reported results and were found to outper-form them with lower complexity.
Cite this paper: Verma, A. and Dong, X. (2016) Detection of Ventricular Fibrillation Using Random Forest Classifier. Journal of Biomedical Science and Engineering, 9, 259-268. doi: 10.4236/jbise.2016.95019.

[1]   Pantelopoulos, A. and Bourbakis, N.G. (2010) A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 40, 1-12.

[2]   Koplan, B.A. and Stevenson, W.G. (2009) Ventricular Tachy-cardia and Sudden Cardiac Death. Mayo Clinic Proceedings, 84, 289-297.

[3]   Weaver, W.D. (1986) Considerations for Improving Survival from Out-of-Hospital Cardiac Arrest. Annals of Emergency Medicine, 15, 1181-1186.

[4]   Amann, A., Tratnig, R. and Unterkofler, K. (2005) Reliability of Old and New Ventricular Fibrillation Detection Algorithms for Automated External Defibrillators. Biomedical Engineering Online, 4, 60.

[5]   Jekova, I. (2007) Shock Advisory Tool: Detection of Life-Threatening Cardiac Arrhythmias and Shock Success Prediction by Means of a Common Parameter Set. Biomedical Signal Processing and Control, 2, 25-33.

[6]   Clayton, R.H. (1994) Recognition of Ventricular Fibrillation Using Neural Networks. Medical & Biological Engineering & Computing, 32, 217-220.

[7]   Moraes, J. (2002) Ventricular Fibrillation Detection Using Leakage/Complexity Measure Method. Computers in Cardiology, 29, 213-216.

[8]   Jekova, I. and Mitev, P. (2002) Detection of Ventricular Fibrillation and Tachycardia from the Surface ECG by a Set of Parameters Acquired from Four Methods. Physiological Measurement, 23, 629-634.

[9]   Goldberger, A.L., et al. (2000) Physiobank, Physiotoolkit, and Physionet Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, e215-e220.

[10]   Nolle, F.M. (1986) CREI-GARD: A New Concept in Computerized Arrhythmia Monitoring Systems. Computers in Cardiology, 13, 515-518.

[11]   Greenwald, S.D. (1986) Development and Analysis of a Ventricular Fibrillation Detector. M.S. Thesis, MIT Dept. of Electrical Engineering and Computer Science, Cambridge, MA.

[12]   Moody, G.B. and Mark, R.G. (2001) The Impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20, 45-50.

[13]   Li, Q. (2014) Ventricular Fibrillation and Tachycardia Classification Using a Machine Learning Approach. IEEE Transactions on Biomedical Engineering, 61, 1607-1613.

[14]   Amann, A. (2007) Detecting Ventricular Fibrillation by Time-Delay Methods. IEEE Transactions on Biomedical Engineering, 54, 174-177.

[15]   Zhang, X.S. (1999) Detecting Ventricular Tachycardia and Fibrillation by Complexity Measure. IEEE Transactions on Biomedical Engineering, 46, 548-555.

[16]   Kuo, S. and Dillman, R. (1978) Computer Detection of Ventricular Fibrillation. IEEE Computers in Cardiology, 347- 349.

[17]   Barro, S. (1989) Algorithmic Sequential Decision Making in a Frequency Domain for Life Threatening Ventricular Arrhythmias and Imitative Artifacts: A Diagnostic System. Journal of Biomedical Engineering, 11, 320-328.

[18]   Kim, J. and Chu, C.H. (2014) ETD: An Extended Time Delay Algorithm for Ventricular Fibrillation Detection. Proceedings of the Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, 26-30 August 2014, 6479-6482.

[19]   Jekova, I. and Krasteva, V. (2004) Real Time Detection of Ventricular Fibrillation and Tachycardia. Physiological Measurement, 25, 1167-1178.

[20]   Li, Q. (2008) Robust Heart Rate Estimation from Multiple Asynchronous Noisy Sources Using Signal Quality Indices and a Kalman Filter. Physiological Measurement, 29, 15-32.

[21]   Arafat, M.A., Chowdhury, A.W. and Hasan, M.K. (2011) A Simple Time Domain Algorithm for the Detection of Ventricular Fibrillation in Electrocardiogram. Signal, Image and Video Processing, 5, 1-10.

[22]   Li, H. (2009) Detecting Ventricular Fibrillation by Fast Algorithm of Dynamic Sample Entropy. Proceedings of the IEEE International Conference on Robotics and Biomimetics, Guilin, 19-23 December 2009, 1105-1110.

[23]   Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.

[24]   Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H. (2009) The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter, 11, 10-18.

[25]   Guyon, I., Gunn, S., Nikravesh, M. and Zadeh, L.A. (Eds.) (2008) Feature Extraction: Foundations and Applications. Springer, Vol. 207.

[26]   Alonso-Atienza, F., Morgado, E., Fernandez-Martinez, L., Garcia-Alberola, A. and Rojo-Alvarez, J.L. (2014) Detection of Life-Threatening Arrhythmias Using Feature Selection and Support Vector Machines. IEEE Transactions on Bio-medical Engineering, 61, 832-840.

[27]   Jekova, I. (2000) Comparison of Five Algorithms for the Detection of Ventricular Fibrillation from the Surface ECG. Physiological Measurement, 21, 429-439.

[28]   Thakor, N.V. (1990) Ventricular Tachycardia and Fibrillation Detection by a Sequential Hypothesis Testing Algorithm. IEEE Transactions on Biomedical Engineering, 37, 837-843.

[29]   Kim, J.Y. and Chu, C.H. (2014) Analysis of Energy Consumption for Wearable ECG Devices. IEEE SENSORS 2014 Proceedings, Valencia, 2-5 November 2014, 962-965.