A Self-Consistent Model on Cylindrical Monopole Plasma Antenna Excited by Surface Wave Based on the Maxwell-Boltzmann Equation

ABSTRACT

The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave; calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.

The paper analyzes the motion of electron in plasma antenna and the distribution of electromagnetic field power around the plasma antenna, and proposes a self-consistent model according to the structure of cylindrical monopole plasma antenna excited by surface wave; calculation of the model is based on Maxwell-Boltzmann equation and gas molecular dynamics theory. The calculation results show that this method can reflect the relationships between the external excitation power, gas pressure, discharge current and the characteristic of plasma. It is an accurate method to predicate and calculate the parameters of plasma antenna.

KEYWORDS

Cylindrical Monopole Plasma Antenna, Self-Consistent Mode, Surface Wave, Maxwell-Boltzmann Equation

Cylindrical Monopole Plasma Antenna, Self-Consistent Mode, Surface Wave, Maxwell-Boltzmann Equation

Cite this paper

nullJ. Lv, Y. Li and Z. Chen, "A Self-Consistent Model on Cylindrical Monopole Plasma Antenna Excited by Surface Wave Based on the Maxwell-Boltzmann Equation,"*Journal of Electromagnetic Analysis and Applications*, Vol. 3 No. 8, 2011, pp. 297-304. doi: 10.4236/jemaa.2011.38048.

nullJ. Lv, Y. Li and Z. Chen, "A Self-Consistent Model on Cylindrical Monopole Plasma Antenna Excited by Surface Wave Based on the Maxwell-Boltzmann Equation,"

References

[1] B. A. Anicin, “Plasma Loaded Helicon Waveguide,” Journal of Physics D: Applied Physics, Vol. 33, 2000, pp. 1276-1281. doi:10.1088/0022-3727/33/11/305

[2] I. D. Sudit and F. F. Chen, “A Non-singular Helicon Wave Equation for a Non-uniform Plasma,” Plasma Sources Science and Technology, Vol. 3, No. 4, 1994, pp. 602-603. doi:10.1088/0963-0252/3/4/018

[3] B. Davies and P. J. Christiansen, “Helicon Waves in a Gaseous Plasma,” Plasma Physics, Vol. 11, No. 12, 1969, pp. 987-1000. doi:10.1088/0032-1028/11/12/004

[4] F. F. Chen, “Plasma Ionization by Helicon Waves,” Plasma Physics and Controlled Fusion, Vol. 33, No. 4, 1991, pp.339-364. doi:10.1088/0741-3335/33/4/006

[5] D. G. Miljak and F. F. Chen, “Helicon Wave Excitation with Rotating Antenna Fields,” Plasma Sources Science and Technology, Vol. 7, No. 1, 1998, pp. 61-74. doi:10.1088/0963-0252/7/1/009

[6] G. G. Borg and J. H. Harris, “Plasmas as Antennas Theory, Experiment and Applications,” Physics of Plasmas, Vol. 7, No. 5, 2000, pp. 2198-2202. doi:10.1063/1.874041

[7] G. G. Borg and J. H. Harris, “Application of Plasma Columns to Radio Frequency Antennas,” Applied Physics Letters, Vol. 74, No. 22, 1999, pp. 3272-3275. doi:10.1063/1.123317

[8] J. P. Rayner and A. P. Whichello, “Physical Characteristics of Plasma Antennas,” IEEE Transactions on Plasma Science, Vol. 32, No. 1, 2004, pp. 269-281. doi:10.1109/TPS.2004.826019

[9] H. Nowakowska, Z. Zakrzewski and M. Moisan, “Propagation Characteristics of Electromagnetic Waves along a Dense Plasma Filament,” Journal of Physics D: Applied Physics, Vol. 34, No. 10, 2001, pp. 1474-1478. doi:10.1088/0022-3727/34/10/307

[10] I. Alexeff and T. Anderson, “Experimental and Theoretical Results with Plasma Antennas,” IEEE Transactions on Plasma Science, Vol. 34, No. 2, 2006, pp.166-178. doi:10.1109/TPS.2006.872180

[11] M. Moisan and Z. J. Zakrzewski, “Plasma Sources Based on the Propagation of Electromagnetic Surface Waves,” Journal of Physics D: Applied Physics, Vol. 24, No. 7, 1991, pp. 1025-2048. doi:10.1088/0022-3727/24/7/001

[12] A. P. ?ilinskij, I. E. Sacharov and V. E. Golant, “Fundamentals Plasma Physics,” MIR, Moscow, 1983.

[13] G. Cerri, F. Moglie, R. Montesi, P. Russo and E. Vecchioni, “FDTD Solution of the Maxwell-Boltzmann System for Electromagnetic Wave Propagation in a Plasma,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2008, pp. 2584-2588. doi:10.1109/TAP.2008.927505

[14] G. Cerri, P. Russo and E. Vecchioni, “A Model of Gas Ionisation by an Electromagnetic Field to Be Used for Plasma Antennas Characterization,” Submitted to A Model of Gas Ionisation by an Electromagnetic Field to Be Used for Plasma Antennas Characterization,” IEEE Transactions on Plasma Science.

[1] B. A. Anicin, “Plasma Loaded Helicon Waveguide,” Journal of Physics D: Applied Physics, Vol. 33, 2000, pp. 1276-1281. doi:10.1088/0022-3727/33/11/305

[2] I. D. Sudit and F. F. Chen, “A Non-singular Helicon Wave Equation for a Non-uniform Plasma,” Plasma Sources Science and Technology, Vol. 3, No. 4, 1994, pp. 602-603. doi:10.1088/0963-0252/3/4/018

[3] B. Davies and P. J. Christiansen, “Helicon Waves in a Gaseous Plasma,” Plasma Physics, Vol. 11, No. 12, 1969, pp. 987-1000. doi:10.1088/0032-1028/11/12/004

[4] F. F. Chen, “Plasma Ionization by Helicon Waves,” Plasma Physics and Controlled Fusion, Vol. 33, No. 4, 1991, pp.339-364. doi:10.1088/0741-3335/33/4/006

[5] D. G. Miljak and F. F. Chen, “Helicon Wave Excitation with Rotating Antenna Fields,” Plasma Sources Science and Technology, Vol. 7, No. 1, 1998, pp. 61-74. doi:10.1088/0963-0252/7/1/009

[6] G. G. Borg and J. H. Harris, “Plasmas as Antennas Theory, Experiment and Applications,” Physics of Plasmas, Vol. 7, No. 5, 2000, pp. 2198-2202. doi:10.1063/1.874041

[7] G. G. Borg and J. H. Harris, “Application of Plasma Columns to Radio Frequency Antennas,” Applied Physics Letters, Vol. 74, No. 22, 1999, pp. 3272-3275. doi:10.1063/1.123317

[8] J. P. Rayner and A. P. Whichello, “Physical Characteristics of Plasma Antennas,” IEEE Transactions on Plasma Science, Vol. 32, No. 1, 2004, pp. 269-281. doi:10.1109/TPS.2004.826019

[9] H. Nowakowska, Z. Zakrzewski and M. Moisan, “Propagation Characteristics of Electromagnetic Waves along a Dense Plasma Filament,” Journal of Physics D: Applied Physics, Vol. 34, No. 10, 2001, pp. 1474-1478. doi:10.1088/0022-3727/34/10/307

[10] I. Alexeff and T. Anderson, “Experimental and Theoretical Results with Plasma Antennas,” IEEE Transactions on Plasma Science, Vol. 34, No. 2, 2006, pp.166-178. doi:10.1109/TPS.2006.872180

[11] M. Moisan and Z. J. Zakrzewski, “Plasma Sources Based on the Propagation of Electromagnetic Surface Waves,” Journal of Physics D: Applied Physics, Vol. 24, No. 7, 1991, pp. 1025-2048. doi:10.1088/0022-3727/24/7/001

[12] A. P. ?ilinskij, I. E. Sacharov and V. E. Golant, “Fundamentals Plasma Physics,” MIR, Moscow, 1983.

[13] G. Cerri, F. Moglie, R. Montesi, P. Russo and E. Vecchioni, “FDTD Solution of the Maxwell-Boltzmann System for Electromagnetic Wave Propagation in a Plasma,” IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2008, pp. 2584-2588. doi:10.1109/TAP.2008.927505

[14] G. Cerri, P. Russo and E. Vecchioni, “A Model of Gas Ionisation by an Electromagnetic Field to Be Used for Plasma Antennas Characterization,” Submitted to A Model of Gas Ionisation by an Electromagnetic Field to Be Used for Plasma Antennas Characterization,” IEEE Transactions on Plasma Science.