Back
 JAMP  Vol.4 No.4 , April 2016
Nonlinear Super Integrable Couplings of a Super Integrable Hierarchy
Abstract:

Nonlinear super integrable couplings of a super integrable hierarchy based upon an enlarged matrix Lie super algebra were constructed. And its super Hamiltonian structures were established by using super trace identity. As its reduction, special cases of this nonlinear super integrable coupling were obtained.

Cite this paper: Tao, S. (2016) Nonlinear Super Integrable Couplings of a Super Integrable Hierarchy. Journal of Applied Mathematics and Physics, 4, 648-654. doi: 10.4236/jamp.2016.44074.
References

[1]   Kupershmidt, B.A. (1985) Odd and Even Poisson Brackets in Dynamical Systems. Letters in Mathematical Physics, 9, 323-330. http://dx.doi.org/10.1007/BF00397758

[2]   Li, Y.S. and Zhang, L.N. (1988) A Note on the Super AKNS Equations. Journal of Physics A: Mathematical and General, 21, 1549-1552. http://dx.doi.org/10.1088/0305-4470/21/7/017

[3]   Tu, M.H. and Shaw, J.C. (1999) Hamiltonian Structures of Generalized Manin-Radul Super-KdV and Constrained Super KP Hierarchies. Journal of Mathematical Physics, 40, 3021-3034. http://dx.doi.org/10.1063/1.532741

[4]   Liu, Q.P. and Hu, X.B. (2005) Bilinearization of N = 1 Supersymmetric Korteweg de Vries Equation Revisited. Journal of Physics A: Mathematical and General, 38, 6371-6378. http://dx.doi.org/10.1088/0305-4470/38/28/009

[5]   Aratyn, H., Nissimov, E. and Pacheva, S. (1999) Supersymmetric Kadomtsev-Petviashvili Hierarchy: “Ghost” Symmetry Structure, Reductions, and Darboux-Ba ?cklund Solutions. Journal of Mathematical Physics, 40, 2922-2932. http://dx.doi.org/10.1063/1.532736

[6]   Morosi, C. and Pizzocchero, L. (1993) On the Bi-Hamiltonian Structure of the Supersymmetric KdV Hierarchies. A Lie Superalgebraic Approach. Communications in Mathematical Physics, 158, 267-288. http://dx.doi.org/10.1007/BF02108075

[7]   Hu, X.B. (1997) An Approach to Generate Superextensions of Integrable Systems. Journal of Physics A: Mathematical and General, 30, 619-632. http://dx.doi.org/10.1088/0305-4470/30/2/023

[8]   He, J.S., Yu, J., Zhou, R.G. and Cheng, Y. (2008) Binary Nonlinearization of the Super AKNS System. Modern Physics Letters B, 22, 275-288. http://dx.doi.org/10.1142/S0217984908014778

[9]   Liu, Q.P., Popowicz, Z. and Tian, K. (2010) Supersymmetric Reciprocal Transformation and Its Applications. Journal of Mathematical Physics, 51, Article ID: 093511. http://dx.doi.org/10.1063/1.3481568

[10]   Ma, W.X., Xu, X.X. and Zhang, Y.F. (2006) Semi-Direct Sums of Lie Algebras and Continuous Integrable Couplings. Physics Letters A, 351, 125-130. http://dx.doi.org/10.1016/j.physleta.2005.09.087

[11]   Guo, F.K. and Zhang, Y.F. (2005) The Quadratic-Form Identity for Constructing the Hamiltonian Structure of Integrable Systems. Journal of Physics A: Mathematical and General, 38, 8537-8548. http://dx.doi.org/10.1088/0305-4470/38/40/005

[12]   Zhang, Y.F. and Tam, H.W. (2010) Four Lie Algebras Associated with R6 and Their Applications. Journal of Mathematical Physics, 51, Article ID: 093514. http://dx.doi.org/10.1063/1.3489126

[13]   Ma, W.X. (2011) Nonlinear Continuous Integrable Hamiltonian Couplings. Applied Mathematics and Computation, 217, 7238-7244. http://dx.doi.org/10.1016/j.amc.2011.02.014

[14]   You, F.C. (2011) Nonlinear Super Integrable Hamiltonian Couplings. Journal of Mathematical Physics, 52, Article ID: 123510. http://dx.doi.org/10.1063/1.3669484

[15]   Zhang, Y.F. and Zhang, H.Q. (2002) A Family of Integrable Systems of Liouville and Lax Representation, Darboux Transformation for Its Constrained Flows. Applied Mathematics and Mechanics, 23, 23-30.

[16]   Shi, H. and Tao, S.X. (2011) A Super-Integrable Hierarchy and Its Super-Hamiltonian Structure. International Journal of Nonlinear Science, 10, 12-16.

[17]   Zhang, Y.F. (2011) Lie Algebras for Constructing Nonlinear Integrable Couplings. Communications in Theoretical Physics, 56, 805-812. http://dx.doi.org/10.1088/0253-6102/56/5/03

 
 
Top