Back
 JAMP  Vol.4 No.4 , April 2016
On the Implementation of Exponential B-Splines by Poisson Summation Formula
Abstract:

Polynomial splines have played an important role in image processing, medical imaging and wavelet theory. Exponential splines which are of more general concept have been recently investigated.We focus on cardinal exponential splines and develop a method to implement the exponential B-splines which form a Riesz basis of the space of cardinal exponential splines with finite energy.

Cite this paper: Kang, S. (2016) On the Implementation of Exponential B-Splines by Poisson Summation Formula. Journal of Applied Mathematics and Physics, 4, 637-640. doi: 10.4236/jamp.2016.44072.
References

[1]   Unser, M. (2000) Sampling-50 Years after Shannon. Proc. IEEE, 88, 569-587. http://dx.doi.org/10.1109/5.843002

[2]   Unser, M. (1999) Splines: A Perfect Fit for Signal and Image Processing. IEEE Signal Process. Mag., 16, 22-38. http://dx.doi.org/10.1109/79.799930

[3]   Unser, M., Aldroubi, A. and Eden, M. (1993) B-Spline Signal Processing: Part 1—Theory. IEEE Trans. Signal Process., 41, 821-832. http://dx.doi.org/10.1109/78.193220

[4]   Unser, M., Aldroubi, A. and Eden, M. (1993) B-Spline Signal Processing: Part 2—Efficient Design and Applications. IEEE Trans. Signal Process., 41, 834-848. http://dx.doi.org/10.1109/78.193221

[5]   Meijering, E.H.W., Niessen, W.J. and Viergever, M.A. (2001) Quantitative Ecaluation of Convolution-Based Methods for Medical Image Interpolation. Med. Image Anal., 5, 111-126. http://dx.doi.org/10.1016/S1361-8415(00)00040-2

[6]   Thevenaz, P., Blu, T. and Unser, M. (2000) Interpolation Revisited. IEEE Trans. Med. Imag., 19, 739-758. http://dx.doi.org/10.1109/42.875199

[7]   Lehmann, T.M., Gonner, C. and Spitzer, K. (1999) Survey: Interpolation Methods in Medical Image Processing. IEEE Trans. Med. Imag., 18, 1049-1075. http://dx.doi.org/10.1109/42.816070

[8]   Lehmann, T.M., Gonner, C. and Spitzer, K. (2001) Addendum: B-Spline Interpolation in Medical Image Processing. IEEE Trans. Med. Imag., 20, 660-665. http://dx.doi.org/10.1109/42.932749

[9]   Unser, M. and Blu, T. (2003) Wavelet Theory Demystified. IEEE Trans. Signal Process., 51, 470-483. http://dx.doi.org/10.1109/TSP.2002.807000

[10]   Unser, M. and Blu, T. (2005) Cardinal Exponential Splines: Part 1—Theory and Filtering Algorithms. IEEE Trans. Signal Process., 53, 1425-1438. http://dx.doi.org/10.1109/TSP.2005.843700

[11]   Schumaker, L.L. (1981) Spline Functions: Basic Theory.

[12]   Dahmen, W. and Micchelli, C.A. (1987) On Theory and Application of Exponential Splines. In: Chui, C.K., Shumaker, L.L. and Utreras, F.I., Eds., Topics in Multivariate Approximation, Academic, New York, 37-46. http://dx.doi.org/10.1016/b978-0-12-174585-1.50008-7

[13]   Schoenberg, I.J. (1946) Contribution to the Problem of Ap-proximation of Equidistant Data by Analytic Functions. Quart. Appl. Math., 4, 45-99.

[14]   Ron, A. (1992) Linear Indepen-dence of the Translates of an Exponential Box Splines. Rocky Mountian J. Math., 22, 331-351. http://dx.doi.org/10.1216/rmjm/1181072814

[15]   De Boor, C. (1972) On Calculation with B-Splines. J. Approx. Theory, 6, 50-62. http://dx.doi.org/10.1016/0021-9045(72)90080-9

 
 
Top