Back
 JEP  Vol.7 No.5 , April 2016
Sugarcane Vinasse, a Residue of Ethanol Industry: Toxic, Cytotoxic and Genotoxic Potential Using the Allium cepa Test
Abstract:

The search for fuels to replace petroleum consumption has caused an increase in the production of biofuels worldwide. The ethanol, which comes from sugarcane, is an energy resource with low polluting potential, but its production generates other environmental problems. On average, 10 to 15 liters of vinasse are generated while preparing each liter of ethanol. Vinasse is the final by-product of the biomass distillation, mainly for the production of ethanol, from different cultures such as sugarcane. Because excessive quantities of vinasse are produced, alternatives have been required for use, for example as fertilizer, in a process known as fertigation. These excessive amounts of vinasse applied in soils have generated adverse effects on soil properties and to the organisms. This study carried out the toxic, cytotoxic and genotoxic potential of sugarcane vinasse obtained from two different harvests (Samples I and II), using the Allium cepa organism test. A. cepa seeds were exposed to raw vinasse (RV) and diluted in different concentrations: control soil + raw vinasse (SV); vinasse diluted in water at 50% + control soil (V 50%); vinasse diluted in water at 25% + control soil (V 25%); vinasse diluted in water at 12.5% + control soil (V 12.5%). The chemical characterization of vinasse samples showed a low pH and high concentration of potassium. The results demonstrate that the two RV samples tested are toxic, since no seeds germination was observed. The cytotoxic potential was observed in the sample II of SV and V (50%). All groups evaluated in samples I and II, induced chromosomal alterations, statistically significant compared with negative control. An increase in frequency of micronuclei in meristematic cells was observed in the SV (Sample I) and all groups evaluated in samples II. Based on the results it is concluded that the genetic material of the test-system was damaged when exposed to sugarcane vinasse, suggesting that one should be very careful in the use of this waste that has been used sometimes indiscriminately in soils.

Cite this paper: Pedro-Escher, J. , Christofoletti, C. , Ansoar-Rodríguez, Y. and Fontanetti, C. (2016) Sugarcane Vinasse, a Residue of Ethanol Industry: Toxic, Cytotoxic and Genotoxic Potential Using the Allium cepa Test. Journal of Environmental Protection, 7, 602-612. doi: 10.4236/jep.2016.75054.
References

[1]   Tsao, C.C., Campbell, J.E., Mena-Carrasco, M., Spak, S.N., Carmichael, G.R. and Chen, Y. (2012) Increased Estimates of Air-Pollution Emissions from Brazilian Sugar-Cane Ethanol. Nature Climate Change, 2, 53-57.
http://dx.doi.org/10.1038/nclimate1471

[2]   Smeets, E.M.W., Faaij, A.P.C., Lewandowski, I.M. and Turkenburg, W.C. (2007) A Bottom-Up Assessment and Review of Global Bio-Energy Potentials to 2050. Progress in Energy and Combustion Science, 33, 56-106.
http://dx.doi.org/10.1016/j.pecs.2006.08.001

[3]   Gunkel, G., Kosmol, J., Sobral, M., Rohn, H., Montenegro, S. and Aureliano, J. (2007) Sugar Cane Industry as a Source of Water Pollution Case Study on the Situation in Ipojuca River Pernambuco Brazil. Water, Air, and Soil Pollution, 180, 261-269.
http://dx.doi.org/10.1007/s11270-006-9268-x

[4]   Rudorff, B.F.T., Aguiar, D.A., Silva, W.F., Sugawara, L.M., Adami, M. and Moreira, M.A. (2010) Studies on the Rapid Expansion of Sugarcane for Ethanol Production in Sao Paulo State (Brazil) Using Landsat Data. Remote Sensing, 2, 1057-1076.
http://dx.doi.org/10.3390/rs2041057

[5]   Cortez, L., Magalh?es, P. and Happi, J. (1992) Principais subprodutos da agroindústria canavieira e sua valoriza??o. Revista brasileira de energia elétrica, 2, 111-146.

[6]   Christofoletti, C.A., Pedro Escher, J., Correia, J.E., Urbano Marinho, J.F. and Fontanetti, C.S. (2013) Sugarcane Vinasse: Environmental Implications of Its Use. Waste Management, 33, 2752-2761.
http://dx.doi.org/10.1016/j.wasman.2013.09.005

[7]   Espa?a-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G. and Alzate-Gaviria, L. (2011) Vinasse: Characterization and Treatments. Waste Manage, 29, 1235-1250.
http://dx.doi.org/10.1177/0734242X10387313

[8]   Santana, V.S. and Machado, N.R.C.F. (2008) Photocatalytic Degradation of the Vinasse under Solar Radiation. Catalysis Today, 133, 606-610.
http://dx.doi.org/10.1016/j.cattod.2007.12.131

[9]   Kataoka, A.P.A.G. (2001) Biodegrada??o de resíduo oleoso de refinaria de petróleo por microrganismos isolados de “landfarming”. PhD Thesis, Bioscience Institute, Unesp-Rio Claro.

[10]   Ma, T.H., Xu, Z., Xu, C., Mc Connell, H., Rabago, E.V., Areola, G.A. and Zhang, H. (1995) The Improved Allium/ Vicia Root Tip Micronucleus Assay for Clastogenicity of Environmental Pollutants. Mutation Research, 334, 185-195.
http://dx.doi.org/10.1016/0165-1161(95)90010-1

[11]   Andrioli, N.B., Soloneski, S., Larramendy, M.L. and Mudry, M.D. (2012) Cytogenetic and Microtubule Array Effects of the Zineb-Containing Commercial Fungicide Formulation Azzurro? on Meristematic Root Cells of Allium cepa L. Mutation Research, 742, 48-53.
http://dx.doi.org/10.1016/j.mrgentox.2011.11.014

[12]   Herrero, O., Perez-Martin, J.M., Fernandez, P., Carvajal, L., Peropadre, A. and Hazen, M.J. (2012) Toxicological Evaluation of Three Contaminants of Emerging Concern by Use of the Allium cepa Test. Mutation Research, 743, 20-24.
http://dx.doi.org/10.1016/j.mrgentox.2011.12.028

[13]   Grant, W.F. (1982) Chromosome Aberration Assays in Allium. A Report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutation Research, 99, 273-291.
http://dx.doi.org/10.1016/0165-1110(82)90046-X

[14]   Leme, M.D. and Marin-Morales, M.A. (2009) Allium cepa Test in Environmental Monitoring: A Review on Its Application. Mutation Research, 10, 1016.
http://dx.doi.org/10.1016/j.mrrev.2009.06.002

[15]   Rank, J. and Nielsen, M.H. (1998) Genotoxicity Testing of Wastewater Sludge Using the A. cepa Anaphase-Telophase Chromosome Aberration Assy. Mutation Research, 4148, 113-119.
http://dx.doi.org/10.1016/S1383-5718(98)00118-1

[16]   Francisco, A., Christofoletti, C.A. and Fontanetti, C.S. (2014) Evaluation of Allowed Parameters for Nickel in Freshwater Bodies Using the Allium cepa Test. Semina. Ciências Biológicas e da Saúde (Online), 35, 49-60.
http://dx.doi.org/10.5433/1679-0367.2014v35n1p49

[17]   Christofoletti, C.A., Pedro-Escher, J. and Fontanetti, C.S. (2013) Assessment of the Genotoxicity of Two Agricultural Residues after Processing by Diplopods Using the Allium cepa Assay. Water Air Soil Pollution, 224, 1523.
http://dx.doi.org/10.1007/s11270-013-1523-3

[18]   Fernandes, T.C.C., Mazzeo, D.E.C. and Marin-Morales, M.A. (2007) Mechanism of Micronuclei Formation in Polyploidizated Cells of Allium cepa Exposed to Trifluralin Herbicide. Pesticide Biochemistry and Physiology, 88, 252-259.
http://dx.doi.org/10.1016/j.pestbp.2006.12.003

[19]   Rodríguez, Y.A, Christofoletti, C.A., Pedro-Ester, J., Correa, O.B., Malaspina, O., Costa Ferreira, R.F. and Fontanetti, C.S. (2015) Allium cepa and Tradescantia pallida Bioassays to Evaluate Effects of the Insecticide Imidacloprid. Chemosphere, 120, 438-442.
http://dx.doi.org/10.1016/j.chemosphere.2014.08.022

[20]   Mello, M.L.S. and Vidal, B.C. (1978) A rea??o de Feulgen. Ciência e Cultura, 30, 665-676.

[21]   Perez, S.C.J.G.A. and Moraes, J.A.P.V. (1991) Curso diário e sazonal do potencial da água e da condutancia estomática em espécies de cerrad?o. Revista Brasileira de Biologia, S?o Carlos, 51, 805-811.

[22]   Cavalcante, A.M.B. and Perez, S.C.J.G. (1995) Efeitos dos estresses híbrido e salino sobre a germina??o de Leucaena leucocephala (Lam.) de Wit. Pesquisa Agropecuária Brasileira, 3, 281-289.

[23]   Leonel, S. and Rodrigues, J.D. (1999) Efeitos de giberelinas citocininas e do nitrato de potássio no proceso germinativo de sementes de limoeiro cravo (Citrus limonia Osbeck). Scientia Agricola, 56, 111-116.
http://dx.doi.org/10.1590/S0103-90161999000100017

[24]   Gazziero, D.P.L., Kzryzanowski, F.C., Ulbrich, A.V. and Pitelli, R.A. (1991) Estudo da supera??o da dormência de sementes de capim massambrá (Sorghim halepense—L. PERS) através de nitrato de potássio e ácido sulfúrico. Revista Brasileira de Sementes, 1, 21-24.
http://dx.doi.org/10.17801/0101-3122/rbs.v13n1p21-24

[25]   Fiskesj?, G. (1985) The Allium Test as a Standard in Environmental Monitoring. Hereditas, 102, 99-112.
http://dx.doi.org/10.1111/j.1601-5223.1985.tb00471.x

[26]   Marcano, L., Bracho, M., Montiel, X., Carruyo, I. and Atencio, L. (1998) Efecto mtotóxico y genotoxico del cadmio em problaciones meristemáticas de Allium cepa L. (cebolla). Ciência, 6, 93-99.

[27]   Liu, D.H., Jiang, W.S., Wang, W., Zhao, F. and Lu, C. (1994) Effects of Lead on Root Growth, Cell Division, and Nucleolus of Allium cepa. Environmental Pollution, 86, 1-4.
http://dx.doi.org/10.1016/0269-7491(94)90002-7

[28]   Türkoglu, S. (2007) Genotoxicity of Five Food Preservatives Tested on Root Tips of Allium cepa L. Mutation Research, 71, 127-131.
http://dx.doi.org/10.1016/j.mrgentox.2006.07.006

[29]   Marcano, L., Carruyo, I., Del Campo, A. and Montiel, X. (2004) Cytotoxicity and Mode of Action of Maleic Hydrazide on Root Tips of Allium cepa L. Environmental Research, 94, 221-226.
http://dx.doi.org/10.1016/S0013-9351(03)00121-X

[30]   Marcano, L., Carruyo, I., Del Campo, A., Montiel, X. and Moreno, P. (1999) Inhibición de la actividad biossinética nucleolar inducidas por el plomo en meristemos radiculares de cebolla (Allium cepa). Revista de la Facultad de Agronomia de La Universidad del Zulia, 16, 476-487.

[31]   FIskej?, G. (1988) The Allium Test—An Alternative in Environmental Studies—The Relative Toxicity of Metal-Ions. Mutation Research, 197, 243-260.
http://dx.doi.org/10.1016/0027-5107(88)90096-6

[32]   Matsumoto, S.T. and Marin-Morales, M.A. (2004) Mutagenic Potential Evaluation of the Water of a River That Receives Tannery Effluents Using the Allium cepa Test System. Cytologia, Tokyo, 69, 399-408.
http://dx.doi.org/10.1508/cytologia.69.399

[33]   Matsumoto, S.T., Mantovani, M.S., Malagutti, M.I.A., Dias, A.L., Fonseca, I.C. and Marin-Morales, M.A. (2006) Genotoxicity and Mutagenicity of Water Contaminated with Tannery Effluents, as Evaluated by the Micronucleus Test and Comet Assay Using the Fish Oreochromis niloticus and Chromosome Aberrations in Onion root-tips. Genetics Molecular Biology, 29, 148-158.
http://dx.doi.org/10.1590/S1415-47572006000100028

[34]   FIskej?, G. and Levan, A. (1993) Evaluation of the First Tem MeiC Chemicals in the Allium cepa. Atlas, 21, 139-149.

[35]   Fenech, M. (2000) The in Vitro Micronucleus Technique. Mutation Research, 455, 81-95.
http://dx.doi.org/10.1016/S0027-5107(00)00065-8

[36]   Yesilada, E. (1999) Genotoxic Activity of Vinasse and Its Effect on Fecundity and Longevity of Drosophila melanogaster. Bulletin of Environmental Contamination and Toxicology, 63, 560-566.
http://dx.doi.org/10.1007/s001289901017

[37]   Pedro-Escher, J., Maziviero, G.T. and Fontanetti, C.S. (2014) Mutagenic Action of Sugarcane Vinasse in the Tradescantia pallida Test System. Journal of Ecosystem & Ecography, 4, 145.
http://dx.doi.org/10.4172/2157-7625.1000145

[38]   Srivastava, S. and Jain, R. (2010) Effect of Distillery Spent Wash on Cytomorphological Behaviour of Sugarcane Settlings. Journal of Environmental Biology, 31, 809-812.

[39]   Souza, T.S., Hencklein, F.A., Angelli, D.F., Gon?ales, R.A. and Fontanetti, C.S. (2009) The Allium cepa Bioassay to Evaluate Landfarming Soil, before and after the Addiction of Rice Hulls to Accelerate Organic Pollutants Biodegradation. Ecotoxicology and Environmental Safety, 72, 1365-1368.

 
 
Top