Back
 IJAA  Vol.6 No.1 , March 2016
A New Solution for the Friedmann Equations
Abstract: Assuming a flat universe expanding under a constant pressure and combining the first and the second Friedmann equations, a new equation, describing the evolution of the scale factor, is derived. The equation is a general kinematic equation. It includes all the ingredients composing the universe. An exact closed form solution for this equation is presented. The solution shows remarkable agreement with available observational data for redshifts from a low of z = 0.0152 to as high as z = 8.68. As such, this solution provides an alternative way of describing the expansion of space without involving the controversial dark energy.
Cite this paper: Mostaghel, N. (2016) A New Solution for the Friedmann Equations. International Journal of Astronomy and Astrophysics, 6, 122-134. doi: 10.4236/ijaa.2016.61010.
References

[1]   Carroll, S.M. (2013) Why Does Dark Energy Make the Universe Accelerate? Posted on 16 November.
http://www.preposterousuniverse.com/blog/2013/11/16/

[2]   Christiansen, J.L. and Siver, A. (2012) Computing Accurate Age and Distance Factors in Cosmology. arXiv: 1204. 0039v1 [astro-ph.CO], 30 March.

[3]   Ullrich, P. (2007) Exact and Perturbed Friedmann-Lemaitre Cosmologies. University of Waterloo, Ontario.
http://www-personal.umich.edu/~paullric/Ullrich-MastersThesis.pdf

[4]   Ade, P.A.R., et al., Plank Collaboration (2014) Plank 2013 Results. XVI. Cosmological Parameters. arXiv: 1303. 5076v3 [astro-ph.CO], 20 March 2014.

[5]   Mostaghel, N. (2015) An Analytical Estimate of the Hubble Constant. American Journal of Astronomy and Astrophysics, 3, 44-49.
http://dx.doi.org/10.11648/j.ajaa.20150303.13

[6]   Carroll, S.M., Press, W.H. and Turner, E.L. (1992) The Cosmological Constant. Annual Review of Astronomy and Astrophysics, 30, 499-542.
http://www.nr.com/whp/CosmoConstAnnRev.pdf

[7]   Wolfram Mathematica (2011) Version: 8.01.0.

[8]   Riess, A.G. (2012) Nobel Lecture: My Path to the Accelerating Universe. Reviews of Modern Physics, 84, 1165-1175.
http://dx.doi.org/10.1103/RevModPhys.84.1165

[9]   Schmidt, B.P. (2012) Nobel Lecture: Accelerating Expansion of the Universe through Observation of Distant Supernovae. Reviews of Modern Physics, 84, 1151-1163.
http://dx.doi.org/10.1103/RevModPhys.84.1151

[10]   Perlmutter, S. (2012) Nobel Lecture: Measuring the Acceleration of the Cosmic Expansion Using Supernovae. Review of Modern Physics, 84, 1127-1149.
http://dx.doi.org/10.1103/RevModPhys.84.1127

[11]   Amanullah, R., Lidman, C., Rubin, D., Aldering, G., Astier, P., Barbary, K., et al. (2010) Spectra and Hubble Space Telescope Light Curves of Six Types Ia Supernovae at 0.511< z < 1.12 and the Union2 Compilation. The Astrophysical Journal, 716, 712-738.
http://supernova.lbl.gov/Union/figur...n2_mu_vs_z.txt
http://dx.doi.org/10.1088/0004-637X/716/1/712


[12]   Mador, B.F. and Steer, I.P. (2008) NASA/IPAC Extragalactic Database Master List of Galaxy Distances. NED-4D.
http://ned.ipac.caltech.edu/level5/NED4D/

[13]   Zitrin, A., Labbe, I., Belli, S., Bouwens, R., Ellis, R.S., Roberts-Borsani, G., Stark, D.P., Oesch, P.A. and Smit, R. (2015) Lyman-Alpha Emission from a Luminous z = 8.68 Galaxy: Implications for Galaxies as Tracers of Cosmic Reionization. The Astrophysical Journal Letters, 810, L12.
http://dx.doi.org/10.1088/2041-8205/810/1/L12
https://en.wikipedia.org/wiki/List_of_the_most_distant_astronomical_objects


[14]   Oesch, P.A., Van Dokkum, P.G., Illingworth, G.D., Bouwens, R.J., Momcheva, I., Holden, B., Roberts-Borsani, G.W., Smit, R., Franx, M., Labbé, I., González, V. and Magee, D. (2015) A Spectroscopic Redshift Measurement for a Luminous Lyman Break Galaxy at z = 7.730 Using Keck/MOSFIRE. The Astrophysical Journal Letters, 804, L30.
http://dx.doi.org/10.1088/2041-8205/804/2/L30

[15]   Finkelstein, S.L., Papovich, C., Dickinson, M., Song, M., Tilvi, V., Koekemoer, A.M., et al. (2013) A Galaxy Rapidly Forming Stars 700 Million Years after the Big Bang at Redshift 7.51. Nature, 502, 524-527.
http://dx.doi.org/10.1038/nature12657

[16]   Matson, J. (2011) Brilliant, but Distant: Most Far-Flung Known Quasar Offers Glimpse into Early Universe. Scientific American, 29 June 2011.
http://eso.org/public/news/eso1122/

[17]   Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton.

[18]   Peacock, J.A. (1999) Cosmological Physics. Cambridge University Press, Cambridge.

[19]   Hogg, D.W., Baldry, I.K., Blanton, M.R. and Eisenstein, D.J. (2002) The K Correction. arXiv:astro-ph/0210394v1.

[20]   Saunders, C., Aldering, G., Antilogus, P., Aragon, C., Bailey, S., Baltay, C., et al. (2014) Type IA Supernova Distance Modulus Bias and Dispersion from K-Correction Errors: A Direct Measurement Using Lightcurve Fits to Observed Spectral Time Series. The Astrophysical Journal, 800, 57.
http://dx.doi.org/10.1088/0004-637X/800/1/57

[21]   Larson, D., Dunkley, J., Hinshaw, G., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2011) Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results. Astrophysical Journal Supplement Series, 192, 16.
http://dx.doi.org/10.1088/0067-0049/192/2/16

[22]   Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Maps and Results. Astrophysical Journal Supplement Series, 208, 20.
http://dx.doi.org/10.1088/0067-0049/208/2/20

[23]   Reid, M.J., Braatz, J.A., Condon, J.J., Lo, K.Y., Kuo, C.Y., Impellizzeri, C.M.V. and Henkel, C. (2013) The Megamaser Cosmology Project IV. A Direct Measurement of the Hubble Constant from UGC 3789. Astrophysical Journal, 767, 154.
http://dx.doi.org/10.1088/0004-637x/767/2/154

 
 
Top