Back
 OJFD  Vol.6 No.1 , March 2016
Chemical Reaction and Thermal Diffusion Effects on Mass Transfer Flow through an Inclined Plate
Abstract: A numerical investigation of boundary layer mass transfer flow through an inclined plate with the effect of chemical reaction and thermal diffusion is presented in this study. The governing partial differential equations (PDE) are transformed to a system of dimensionless non-similar coupled PDEs. The transformed, non-similar conservations equations (momentum balance equation, energy balance equation and concentration balance equation) are then solved using a numerical approach known as explicit finite difference method (EFDM). Basically EFDM introduced for the unsteadiness in the momentum, temperature, and concentration fluid fields is based on the time dependent fluid velocity, temperature and concentration of the boundary surface. During the course of discussion, it is found that the various parameters related to the problem influence the calculated resultant expressions. The computed numerical solution results for the velocity, temperature, and concentration distribution with the effect of various important dimensionless parameters (Grashof number, Modified Grashof number, Prandtl number, Schmidt number, Soret number, Dufour number, chemical reaction parameter and inclination parameter) entering into the problems are critically analyzed and discussed graphically. It can be seen that two physical phenomena chemical reaction and thermal diffusion can greatly effect on the boundary layer fluid flows through an inclined plate.
Cite this paper: Akter, F. , Islam, M. , Islam, A. , Khan, M. and Hossain, M. (2016) Chemical Reaction and Thermal Diffusion Effects on Mass Transfer Flow through an Inclined Plate. Open Journal of Fluid Dynamics, 6, 62-74. doi: 10.4236/ojfd.2016.61006.
References

[1]   Pera, L. and Gebhart, B. (1971) The Nature of Vertical Natural Convection Flows Resulting from the Combined Buoyancy Effects of Thermal and Mass Diffusion. International Journal of Heat and Mass Transfer, 15, 269-278.
http://dx.doi.org/10.1016/0017-9310(72)90074-9

[2]   Soundalgekar, V.M. and Ganesan, P. (1981) Finite-Difference Analysis of Transient Free Convection with Mass Transfer on an Isothermal Vertical Flat Plate. International Journal of Engineering Science, 19, 757-770.
http://dx.doi.org/10.1016/0020-7225(81)90109-9

[3]   Singh, A.K., Singh, A.K. and Singh, N.P. (2003) Heat and Mass Transfer in MHD Flow of a Viscous Fluid Past a Vertical Plate under Oscillatory Suction Velocity. Indian Journal of Pure and Applied Mathematics, 34, 429-442.

[4]   Ambethkar, V. (2008) Numerical Solutions of Heat and Mass Transfer Effects of an Unsteady MHD Free Convective Flow Past an Infinite Vertical Plate with Constant Suction. Journal of Naval Architecture and Marine Engineering, 5, 27-36.

[5]   Sivaiah, M., Nagarajan, A.S. and Reddy, P.S. (2009) Heat and Mass Transfer Effects on MHD Free Convective Flow past a Vertical Porous Plate. The ICFAI University Journal of Computational Mathematics, 2, 14-21.

[6]   Umemura, A. and Law, C. K. (1990) Natural Convection Boundary Layer Flow over a Heatedplate with Arbitrary Inclination. Journal of Fluid Mechanics, 219, 571-584.
http://dx.doi.org/10.1017/S0022112090003081

[7]   Chamka, A. and Khaled, A.R.A. (2001) Simultaneously Heat and Mass Transfer in Free Convection. Industrial Engineering Chemical, 49, 961-968.

[8]   Reddy, M.G. and Reddy, N.B. (2011) Mass Transfer and Heat Generation Effects on MHD Free Convection Flow past an Inclined Vertical Surface in a Porous Medium. Journal of Applied Fluid Mechanics, 4, 7-11.

[9]   Singh, P.K. (2012) Heat and Mass Transfer in MHD Boundary Layer Flow past an Inclined Plate with Viscous Dissipation in Porous Medium. International Journal of Scientific & Engineering Research, 3, 2229-5518.

[10]   Ali, L.E., Islam, A. and Islam, N. (2015) Investigate Micropolar Fluid Behavior on MHD Free Convection and Mass Transfer with Constant Heat and Mass Fluxes by Finite Difference Method. American Journal of Applied Mathematics, 3, 157-168.
http://dx.doi.org/10.11648/j.ajam.20150303.23

[11]   Islam, M., Akter, F. and Islam, A. (2015) Mass Transfer Flow through an Inclined Plate with Porous Medium. American Journal of Applied Mathematics, 3, 215-220.
http://dx.doi.org/10.11648/j.ajam.20150305.12

[12]   Chaudhary, R.C. and Jha, A.K. (2008) Effects of Chemical Reactions on MHD Micropolar Fluid Flow past a Vertical Plate in Slip-Flow Regime. Applied Mathematics and Mechanics, 29, 1179-1194.
http://dx.doi.org/10.1007/s10483-008-0907-x

[13]   Muthuchumaraswamy, R. (2009) First Order Chemical Reaction on Exponentially Accelerated Isothermal Vertical Plate with Mass Diffusion. Annals Faculty of Engineering, 7, 47-50.

[14]   Rajesh, V. and Varma, S.V.K. (2009) Chemical Reaction and Radiation Effects on MHD Flow Past an Infinite Vertical Plate with Variable Temperature. Far East Journal of Mathematical Sciences, 32, 87-106.

[15]   Eckert, E.R.G. and Drake, R.M. (1972) Analysis of Heat and Mass Transfer. McGraw-Hill Book Company, New York.

[16]   Olajuwon, B.I. (2011) Convection Heat and Mass Transfer in a Hydromagnetic Flow of a Second Grade Fluid in the Presence of Thermal Radiation and Thermal Diffusion. International Communications in Heat and Mass Transfer, 38, 377-382.
http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.11.006

[17]   Kumar, A.G.V., Goud, Y.R. and Varma, S.V.K. (2012) Thermal Diffusion and Radiation Effects on Unsteady MHD Flow through Porous Medium with Variable Temperature and Mass Diffusion in the Presence of Heat Source/Sink. Advances in Applied Science Research, 3, 1494-1506.

[18]   Ferdows, M., Khan, M.S., Bég, O.A. and Alam, M.M. (2013) Numerical Study of Transient Magneto Hydrodynamicradiative Free Convection Nanofluid Flow from a Stretching Permeable Surface. Journal of Process Mechanical Engineering, 1-16.

[19]   Khan, M.S., Karim, I., Ali, L.E. and Islam, A. (2012) MHD Free Convection Boundary Layer Unsteady Flow of a Nanofluid along a Stretching Sheet with Thermal Radiation and Viscous Dissipation Effects. International Nano Letters, 2, 1-9.
http://dx.doi.org/10.1186/2228-5326-2-24

 
 
Top