EPE  Vol.3 No.3 , July 2011
Preparation of La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application
Abstract: The La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) nano ceramic powders were prepared by Sol-Gel process using nitrate based chemicals for SOFC applications since these powders are considered to be more promising cathode materials for SOFC. Citric acid was used as a chelant agent and ethylene glycol as a dispersant. The powders were calcined at 650oC/6 h, 900oC/3 h in air using Thermolyne 47,900 furnace. These powders were charac terized by SEM/EDS, XRD and Porosimetry techniques. The SEM images indicate that the particle sizes of the LBCF powders are in the range of 50 - 200 nm. The LBCF perovskite phases are seen from the XRD patterns. From XRD Line broadening technique, the average particle size for the powders (as prepared and calcined at 650oC/6 h and 900oC/3 h) were found to be around 12.97 nm, 22.24 nm and 26 nm respectively. The surface area of the LBCF powders for the as prepared and calcined at 650oC were found to be 28.92 and 19.54 m2/g respectively.
Cite this paper: nullY. Al-Yousef and M. Ghouse, "Preparation of La0.6Ba0.4Co0.2Fe0.8O3 (LBCF) Nanoceramic Cathode Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application," Energy and Power Engineering, Vol. 3 No. 3, 2011, pp. 382-391. doi: 10.4236/epe.2011.33049.

[1]   S. C. Singhal and K. Kendell, “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications” Elsevier Science, Oxford, 2003.

[2]   T.-L. Wen, D. Wang, M. Chen, H. Z. Zhang, H. Nie and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, No. 3-4, 2002, pp. 513-519. doi:10.1016/S0167-2738(02)00098-X

[3]   N. Sakai, T. Kawada, H. Yokokawa, M. Dokia and T. Iwata, “Sinterability and Electrical Conductivity of Calcium-Doped Lanthanum Chromiyes,” Journal of Materials Science, Vol. 25, No. 10, 1990, pp. 4531-4534. doi:10.1007/BF00581119

[4]   N. Sakai, T. Horita, H. Yokokawa, M. Dokiya and T. Kawada, “Oxygen Permeation Measurement of La 1-xCaxCrO3-σ by Using an Electrochemical Method,” Solid State Ionics, 1996; Vol. 86-88, Part 2, pp. 1273-1278. doi:10.1016/0167-2738(96)00300-1

[5]   T. Horita, K. Jamaji, M. Ishikawa, N. Sakai, H. Yokokawa and T. Kawada, “Active Sites Imaging for Oxygen Reduc- tion at La0.9 Sr0.1 MnO3-x/Yttria-Stabilized Zirconia Interface by Secondary-Ion Mass Spectrometry,” Journal of the Electrochemical Society, Vol. 145, No. 9, 1998, pp. 3196-3202.

[6]   J. Mizusaki, H. Tagawa, K. Naraya and T. Sasamoto, “Electronic Conductivity, Seebeck Coefficient, Defect and Electronic Structure of Nonstoichiometric La1-xSrx MnO3,” Solid State Ionics, Vol. 132, No. 3-4, 2000, pp. 167-180. doi:10.1016/S0167-2738(00)00662-7

[7]   S. P. Jiang, J. P. Zhang, Y. Ramaprakash, D. Milosevic and K. Wilshier, “An Investigation of Shelf-Life of Strontium Doped LaMnO3 Materials,” Journal of Materials Science, Vol. 35, No. 11, 2000, pp. 735-741. doi:10.1023/A:1004766212164

[8]   S. P. Jiang, J. G. Love, J. P. Zhang, M. Hoang, Y. Ramaprakash and A. E. Hughes, “The Electrochemical Performance of LSM/Zirconia-Yttria Interface as a Function of a-Site Non-stoichiometry and Cathodic Current Treatment,” Solid State Ionics, Vol. 121, No. 1-4, 1999, pp. 1-10. doi:10.1016/S0167-2738(98)00295-1

[9]   P. Decorse, G. Caboche and L.-C. Dufour, “A Comparative Study of the Surface and Bulk Properties of Lanthanum-Strontium-Manganese Oxides La1?xSrxMnO3±δ as a Function of Sr-Content, Oxygen Potential and Temperature,” Solid State Ionics, Vol. 117, No. 1-2, 1999, pp. 161-169. doi:10.1016/S0167-2738(98)00260-4

[10]   Z. Tang, Y. Xie, H. Hawthorne and D. Ghosh, “Sol-Gel Processing of Sr0.5Sm0.5CoO3 Film,” Journal of Power Sources, Vol. 157, No. 1, 2006, pp. 385-388. doi:10.1016/j.jpowsour.2005.07.041

[11]   B. C. H. Steele, “Appraisal of LCe1-yGdyO2-y/2 Electyrolytes for IT-SOFC Operation at 500?C,” Solid State Ionics, Vol. 129, No. 1-4, 2000, pp. 95-110. doi:10.1016/S0167-2738(99)00319-7

[12]   E. B. Mitberg, M. V. Patrakeev, I. A. Leonidov, V. L. Kozhevnikov and K. R. Poeppelmeier, “High-Temperature Electrical Conductivity and Thermopower in Nonstoichiometric La1?xSrxCoO3?δ (x = 0.6),” Solid State Ionics, Vol. 127, No. 3-4, 2000, pp. 325-330. doi:10.1016/S0167-2738(00)00670-6

[13]   C.-F. Kao and C.-L. Zheng, “Electrochemical Behaviour of Oxygen at Nickel Nest Cathodic Material with Catalyst La1?xSrxCoO3,” Solid State Ionics, Vol. 120, No. 1-4, 1999, pp. 163-171. doi:10.1016/S0167-2738(98)00561-X

[14]   S. P. Simner, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, V. L. Sprenkle and J. W. Stevenson, “Optimized Lanthanum Ferrite-Based Cathodes for Anode-Supported SOFCs,” Electrochemical and Solid-State Letters, Vol. 5, No. 7, 2002, pp. 173-175.

[15]   A. Mai, V. A. C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stover, “Ferrite-Based Perovskites as Cathode Materials for Anode-Supported Solid Oxide Fuel Cells: Part I. Variation of Composition,” Solid State Ionics, Vol. 176, No. 15-16, 2005, pp. 341-350. doi:10.1016/j.ssi.2005.03.009

[16]   Y. Teraoka, H. M. Zhang, K. Okamoto and N. Yamazoe, “Mixed Ionic -Electronic Conductivity of La1-xSrxCo1-y Fe y O 3-σ Perovskite-Type Oxide,” Materials Research Bulletin, Vol. 23, No. 1, 1988, pp. 51-58. doi:10.1016/0025-5408(88)90224-3

[17]   J. A. Kilner, R. A. De Souza and I. C. Fullarton, “Surface Exchange of Oxygen in Mixed Conducting Perovskite Oxide,” Solid State Ionics, Vol. 86-88, Part 2, 1996, pp. 703-709. doi:10.1016/0167-2738(96)00153-1

[18]   S. Tanasescu, N. D. Totir and I. Marchidan, “Thermodynamic Properties of Some Perovskite Type Oxide Used as SOFC Cathode Materials,” Solid State Ionics, Vol. 119, No. 1-4, 1999, pp. 311-315. doi:10.1016/S0167-2738(98)00520-7

[19]   J. Holc, D. Ku??er, M. Hrovat, S. Bernik and D. Kolar, “Electrical and Microstructural Characterization of (La0.8Sr0.2) (Fe1-xAlx)O3 and (La0.8Sr0.2) (Mn1-xAlx)O3 as Possible SOFC Cathode Materials,” Solid State Ionics, Vol. 95, No. 3-4, 1997, pp. 259-268. doi:10.1016/S0167-2738(96)00595-4

[20]   Z. P. Shao and S. M. Haile, “A High-Performance Cathode for the Next Generation of Solid Oxide Fuel Cells,” Nature, Vol. 431, 2004, pp. 170-173. doi:10.1038/nature02863

[21]   Y. D. Zhen, A. I. Y. Tok, S. P. Jiang and F. Boey, “La(Ni,Fe)O3 as a Cathode Material with High Tolerance to Chromium Poisoning for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 170, No. 1, 2007, pp. 61-66. doi:10.1016/j.jpowsour.2007.03.079

[22]   Y. D. Zhen, S. P. Jiang and A. I. Y. Tok, “Strategy of the Development of Cr-Tolerant Cathodes of Solid Oxide Fuel Cells,” ECS Transactions, Vol. 7, No. 1, 2007, pp. 263-269. doi:10.1149/1.2729100

[23]   S. Lee, Y. Lim, E. A. Lee, H. J. Hwang and J.-W. Moon, “Ba0.5Sr0.5C00.8Fe0.2O3-δ (BSCF) and La0.6Ba0.4C00.2Fe0.8O3-δ (LBCF) Cathodes Prepared by Combined Citrtate-EDTA Method for IT-SOFCs,” Journal of Power Sources, Vol. 157, No. 2, 2006, pp. 848-854. doi:10.1016/j.jpowsour.2005.12.028

[24]   Y. Zhen and S. P. Jiang, “Characterization and Performance of (La,Ba)(Co,Fe)O3 Cathode for Solid Oxide Fuel Cells with Iron-Chromium Metallic Interconnect,” Journal of Power Sources, Vol. 180, No. 2, 2008, pp. 695-703. doi:10.1016/j.jpowsour.2008.02.093


[26]   K. C. Wincewicz and J. S. Cooper, “Taxonomies of SOFC Material and Manufacturing Alternatives,” Journal of Power Sources, Vol. 140, No. 2, 2005, pp. 280-296.

[27]   M. Ghouse, A. Al-Musa, Y. Al-Yousef and M. F. Al-Otaibi, “Synthesis of Mg Doped LaCrO3 Nano Powders by Sol-Gel Process for Solid Oxide Fuel Cell Application,” Journal of New Materials for Electrochemical Systems, Vol. 13, No. 2, 2010, pp. 99-106.

[28]   M. Ghouse, Y. Al-Yousef, A. Al-Musa and M. F. Al-Otaibi, “Preparation of La0.6Sr0.4Co0.2Fe0.8O3 Nanoce- ramic Cathode Powders for Solid Oxide Fuel Cell (SOFC) Application,” International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9411-9419. doi:10.1016/j.ijhydene.2010.04.144

[29]   M. Ghouse, Y. Al-Yousef, A. Al-Musa and M. F. Al-Otaibi, “Preparation of La0.7Ca0.3CrO3 Nanoceramic Powders for Solid Oxide Fuel Cell (SOFC) Application,” World Journal of Engineering, Vol. 6, No. 1, 2009, pp. 149-155.

[30]   B. D. Cullity, “Elements of X-Ray Diffraction,” 2nd Edition, Addison-Wesley Publication Co., reading, 1978, p. 102.

[31]   R. D. Purohit, S. Saha and A. K. Tyagi “Nanocrystalline thoria Powders via Glycine-Nitrate Combustion,” Journal of Nuclear Materials, Vol. 288, No. 1, 2001, pp. 7-10. doi:10.1016/S0022-3115(00)00717-0