Numerical Solution of System of Fractional Delay Differential Equations Using Polynomial Spline Functions

Show more

References

[1] Loscalzo, F.R. (1969) An Introduction to the Application of Spline Function to Initial Value Problems. In: Greville, T.N.E., Ed., Theory and Applications of Spline Functions, Academic Press, New York, 37-64.

[2] Loscalzo, F.R. and Tabot, T.D. (1967) Spline Function Approximations for Solutions of Ordinary Differential Equations. Bulletin of the American Mathematical Society, 73, 708.

http://dx.doi.org/10.1090/S0002-9904-1967-11778-6

[3] Meir, A. and Sharma, A. (1973) Spline Functions and Approximation Theory. BirkhauserVerlag, Basel-Stuttgart.

http://dx.doi.org/10.1007/978-3-0348-5979-0

[4] Saad, B. (1966) Error of Arbitrary Order Method for Solving n-th Order Differential Equations by Spline Functions. PhD Thesis, Tanta University, Egypt.

[5] Sherif, M.N., Abouelfarag, I. and Amer, T.S. (2014) Numerical Solution of Fractional Delay Differential Equations Using Spline Functions. IJPAM, 90, 73-83.

http://dx.doi.org/10.12732/ijpam.v90i1.10

[6] Joakim, M. (2004) Riemann-Liouville Fractional Derivatives and the Taylor-Riemann Series. Department of Math. Uppsala University UUDM. Project Report 7.

[7] Ramadan, M.A. (2005) Spline Solution of First Order Delay Differential Equation. Journal of the Egyptian Mathematical Society, 1, 7-18.

[8] Ramadan, M.A. (2007) Numerical Treatment of the Second Ordinary Delay Differential Equations by Spline Functions. Proceeding of the Mathematical and Physical Society of Egypt, 85, 49-60.

[9] Ramadan, M.A., Mokhtar, A., Abdel-Naby, M. and Taher, S. (2005) Spline Approximation for Second Order System of Delay Differential Equations. Journal of the Egyptian Mathematical Society, 13, 177-188.

[10] Ramadan, M.A., El-sherbeiny, A. and Sherif, M.N. (2009) The Use of Polynomial Spline Functions for the Solution of System of Second Order Delay Differential Equations. International Journal of Computer Mathematics, 86, 1167-1181.

http://dx.doi.org/10.1080/00207160701769617

[11] Ramadan, M.A., Danaf, T.E. and Sherif, M.N. (2012) Error Analysis, Stability, and Numerical Solutions of Fractional—Order Differential Equations. IJPAM, 647-659, 76,5.

[12] Eyaad, A. and Elgazzar, A.S. (2007) On Fractional Order Differential Equations Model for Nonlocal Epidemics. Physica A, 379, 607-614.

http://dx.doi.org/10.1016/j.physa.2007.01.010

[13] Eyaad, A., El-Sayed, A.M.A. and Elsaka, H.A.A. (2007) Equilibrium Point, Stability, and Numerical Solutions of Fractional-Order Predator-Prey and Rabies Models. Journal of Mathematical Analysis and Applications, 325, 542.

http://dx.doi.org/10.1016/j.jmaa.2006.01.087

[14] Dithelm, K. and Neville, J.F. (2003) Analysis of Fractional Differential Equation. The University of Manchester, Numerical Analysis Report 377.

[15] Dithelm, K. and Freed, A.D. (1999) The FracPECE Subroutine for the Numerical Solution of Differential Equations of Fractions Order. In: Heinzel, S. and Plesser, T., Eds., Forschung und Wiessenschaftliches Rechnen 1998, GWDG-Bericht, Gesellschaftfur Wiessenschaftliches Datenverabeitung, Gottingen, 57-71.

[16] Dithelm, K. and Freed, A.D. (1999) On the of Solution of Nonlinear Differential Equations Used in the Modeling of Viscoplasticity. In: Keil, F., Mackens, W., Vob, H. and Werther, J., Eds., Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics Reaction Engineering, and Molecular Properties, Springer, Heidelberg, 217-224.

[17] Dithelm, K. (1997) An Algorithm for the Numerical Solution of Differential Equations of Fractions Order. Electronic Transactions on Numerical Analysis, 5, 1-6.

[18] Dithelm, K., Judith, M.F., Neville, J.F. and Weilbeer, M. (2006) Pitfalls in Fast Numerical Solvers for Fractions Differential Equations. Journal of Computational and Applied Mathematics, 186, 482-503.

http://dx.doi.org/10.1016/j.cam.2005.03.023

[19] Sweilam, N.M., Khader, M.M. and Al-Bar, R.F. (2007) Numerical Studies for a Multi-Order Fractional Differential Equation. Physics Letters A, 371, 26-33.

http://dx.doi.org/10.1016/j.physleta.2007.06.016

[20] Micula, G., Fawzy, T. and Ramadan, Z. (1987) A Polynomial Spline Approximation. Method for Solving System of Ordinary Differential Equations. Babes-Bolyai Cluj-Napoca Mathematica, 4, 55-60.

[21] Rmadan, Z. (2000) On the Numerical Solution of a System of Third Order Ordinary Differential Equations by Spline Functions. Ann Univ Sect. Comput, 19, 155-167.