Back
 MSCE  Vol.4 No.3 , March 2016
Getters: From Classification to Materials Design
Abstract: The demand for getters with high sorption efficiency has generated a need for resources to assist in qualification of getter materials for their practical use. This paper discusses innovative steps which should provide a dramatic improvement in the selection and application of getter technologies used in various processes. The first step was to build a natural classification of chemisorbents, from which we obtain a corresponding order of suitability related to known getter products. The classification system suggested by the authors is based on criteria which are directly connected with the sorption behavior of the material. This has lead to the challenge of developing of a computing algorithm for characterization of sorption properties of getter materials and for solving the inverse problem—the problem of designing a chemisorbent based on the requirements of a fully realized application. The employment of the new methodology is demonstrated in the example of the calculations supporting the selection of getter films for MEMS.
Cite this paper: Chuntonov, K. , Atlas, A. , Setina, J. and Douglass, G. (2016) Getters: From Classification to Materials Design. Journal of Materials Science and Chemical Engineering, 4, 23-34. doi: 10.4236/msce.2016.43004.
References

[1]   Littmann, M. (1938) Getterstoffe und ihre Anwendung in der Hochvakuumtechnik. CF Wintersche Verlagshandlung, Leipzig.

[2]   Espe, W., Knoll, M. and Wilder, M.P. (1950) Getter Materials. Electronics, 23, 80-86.

[3]   Pirani, M. and Yarwood, J. (1961) Principles of Vacuum Engineering. Reinhold Publishing Corporation, New York.

[4]   Weston, G.F. (1985) Ultrahigh Vacuum Practice. Butterworth, London.

[5]   Wutz, M., Adam, H., Walcher, W. and Jousten, K. (2000) Handbuch Vakuumtechnik. Theorie und Praxis. Vieweg+ Teubner Verlag, Braunschweig/Wiesbaden.
http://dx.doi.org/10.1007/978-3-322-99947-4

[6]   Shoen, H. (2015) Handbook of Purified Gases. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-540-32599-4

[7]   Chuntonov, K. and Yatsenko, S. (2013) Getter Films for Small Vacuum Chambers. Recent Patent onMaterials Science, Bentham Science Publishers, 6, 29-39.
http://dx.doi.org/10.2174/1874464811306010029

[8]   Chuntonov, K., Setina, J. and Douglass, G. (2015) The Newest Getter Technologies: Materials, Processes, Equipment. Journal of Material Science and Chemical Engineering, 3, 57-67.
http://dx.doi.org/10.4236/msce.2015.39008

[9]   Chuntonov, K. and Setina, J. (2016) Reactive getters for MEMS applications. Vacuum, 123, 42-48.
http://dx.doi.org/10.1016/j.vacuum.2015.10.012

[10]   della Porta, P. (1992) “Gettering” an Integral Part of Vacuum Technology. Proceedings of the 39th National Symposium of American Vacuum Society, Chicago, 9-13 November, Technical Paper TP 202.

[11]   Ferrario, B. (1998) Getters and Getter Pumps. In: Lafferty, J.M., Ed., Foundations of Vacuum Science and Technology, John Wiley & Sons, New York, 261-315.

[12]   Benvenuti, C. (1999) Molecular Surface Pumping: The Getter Pump. CAS-CERN Accelerator School: Vacuum Technology, Snekersten, Denmark, 28 May-3 June, 43-48.

[13]   Brochure SAES Getters (2004) IntegraTorr Sputtered Non-Evaporable Getter.

[14]   ASTM F798-97 (2002) Standard Practice for Determining Gettering Rate, Sorption Capacity, and Gas Content of Nonevaporable Getters in the Molecular Flow Region.

[15]   Kubaschewski, O. and Hopkins, B.E. (1962) Oxidation of Metals and Alloys. Butterworths, London.

[16]   Hauffe, K. (1966) Reaktionen in und an festen Stoffen. 2 Auflagen, Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-88042-1

[17]   Meyer, K. (1968) Physicalisch-Chemische Kristallographie. VEB Deutscher Verlag, Leipzig.

[18]   Fromm, E. and Gebhardt, E. (1976) Gase und Kohlenstoff in Metallen. Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-80943-9

[19]   Toia, L. and Boffito, C. (2003) Non-Evaporable Getter Alloys. US Patent No. 6521014.

[20]   Giorgi, E. and Ferrario, B. (1989) High Porosity Thick Film Getters. IEEE Transaction on ElectronDevices, 36, 2744-2747.
http://dx.doi.org/10.1109/16.43783

[21]   Brochure SAES Getters (2012) St 707 Pills & Pieses.

[22]   Song, M.Y., Pezat, M., Darriet, B., Lee, J.Y. and Hagenmuller, P. (1986) A Hydriding Kinetic Model of the Mg2Ni-H2 System. Journal of Materials Science, 21, 346-354.
http://dx.doi.org/10.1007/BF01144743

[23]   Kovacs, A.L., Peter, M.H., Ketola, K.S. and Linder, J.F. (2004) Multilayer Thin Film Hydrogen Getter and Internal Signal EMI Shield for Complex Three Dimensional Electronic Package Components. US Patent No. 6822880.

[24]   Baker, J.D., Meikrantz, D.H. Pawelko, R.J. Anderl, R.A. and Tuggle, D.G. (1994) Tritium Purification via Zirconium-Manganese-Iron Alloy Getter St 909 in Flow Processes. Journal of Vacuum Science & Technology A, 12, 548-553.
http://dx.doi.org/10.1116/1.579167

[25]   Setina, A. (2003) Report of the First Measurements of Getter Samples from Konstantin Technologies at IMT. IMT-Institut za Kovinskemateriale in Tehnologije, Ljubljana, 1-5.

[26]   Chuntonov, K. and Setina, J. (2008) New Lithium Gas Sorbents: I. The Evaporable Variant. Journal of Alloys and Compounds, 455, 489-496.
http://dx.doi.org/10.1016/j.jallcom.2007.01.158

[27]   Chuntonov, K. (2014) Barium Containing Granules for Sorption Applications. US Patent No. 8623302.

[28]   Adamson, A.W. (1982) Physical Chemistry. 4th Edition, John Wiley & Sons, New York.

[29]   Wu, F.C., Tseng, R.L. and Juang, R.S. (2009) Characteristics of Elovich Equation Used for the Analysis of Adsorption Kinetics in Dye-Chitosan Systems. Chemical Engineering Journal, 150, 366-373.
http://dx.doi.org/10.1016/j.cej.2009.01.014

[30]   Reichelt, K. and Jiang, X. (1990) The Preparation of Thin Films by Physical Vapour Deposition Methods. Thin Solid Films, 191, 91-126.
http://dx.doi.org/10.1016/0040-6090(90)90277-K

[31]   Matox, D.M. (2010) Handbook of Physical Vapor Deposition (PVD) Processing. Elsevier Inc., Amsterdam.

[32]   Elliot, S.R. (1998) The Physics and Chemistry of Solids. John Willey & Sons, Chichester.

[33]   Palmieri, V., Preciso, R. and Ruzinov, V. (1994) Method and Apparatus for Sputtering Superconducting Thin Films of Niobium on Quarter-Wave Resonant Cavities of Copper for Accelerating Heavy Ions. US Patent No. 5306406.

[34]   Sturland, I.M. and Hawke, T.A. (2014) Thin Film Getter Devices. US Patent No. 8663789.

[35]   Perdijk, H.J.R. (1967) A Compilation of Gas Reactions as Observed in Electron Tubes. Supplemento al Nuovo Cimento, 5, 73-92.

[36]   Boffito, C. (1999) Basic Properties and Metallurgy of Non-Evaporable Getter Materials. 23rd IUVSTA Workshop on Gettering Materials: Principles and Uses, Bonassola, 5-10 June 1999, 1-55.

[37]   Chuntonov, K., Ivanov, A.O. and Permikin, D. (2009) New Lithium Gas Sorbents: IV. Application to MEMS Devices. Journal Alloys and Compounds, 471, 211-216.
http://dx.doi.org/10.1016/j.jallcom.2008.03.060

[38]   Benvenuti, C., Chiggiato, P., Pinto, P.C., Santana, A.E., Hedley, T., Mongelluzzo, A., Ruzinov, V. and Wevers, I. (2001) Vacuum Properties of TiZrV Non-Evaporable Getter Films. Vacuum, 60, 57-65.
http://dx.doi.org/10.1016/S0042-207X(00)00246-3

[39]   Chuntonov, K. (2015) Sorption Apparatus for the Production of Pure Gases. US Patent No. 9095805.

[40]   Chuntonov, K. (2015) Sorption Vessels for Clean Gases Production. RU Patent No. 2570450.

 
 
Top