Back
 IJAA  Vol.6 No.1 , March 2016
Einstein’s Dark Energy via Similarity Equivalence, ‘tHooft Dimensional Regularization and Lie Symmetry Groups
Abstract: Realizing the physical reality of ‘tHooft’s self similar and dimensionaly regularized fractal-like spacetime as well as being inspired by a note worthy anecdote involving the great mathematician of Alexandria, Pythagoras and the larger than life man of theoretical physics Einstein, we utilize some deep mathematical connections between equivalence classes of equivalence relations and E-infinity theory quotient space. We started from the basic principles of self similarity which came to prominence in science with the advent of the modern theory of nonlinear dynamical systems, deterministic chaos and fractals. This fundamental logico-mathematical thread related to partially ordered sets is then applied to show how the classical Newton’s kinetic energy E = 1/2mv2 leads to Einstein’s celebrated maximal energy equation E = mc2 and how in turn this can be dissected into the ordinary energy density E(O) = mc2/22 and the dark energy density E(D) = mc2(21/22) of the cosmos where m is the mass; v is the velocity and c is the speed of light. The important role of the exceptional Lie symmetry groups and ‘tHooft-Veltman-Wilson dimensional regularization in fractal spacetime played in the above is also highlighted. The author hopes that the unusual character of the analysis and presentation of the present work may be taken in a positive vein as seriously attempting to propose a different and new way of doing theoretical physics by treating number theory, set theory, group theory, experimental physics as well as conventional theoretical physics on the same footing and letting all these diverse tools lead us to the answer of fundamental questions without fear of being labelled in one way or another.
Cite this paper: El Naschie, M. (2016) Einstein’s Dark Energy via Similarity Equivalence, ‘tHooft Dimensional Regularization and Lie Symmetry Groups. International Journal of Astronomy and Astrophysics, 6, 56-81. doi: 10.4236/ijaa.2016.61005.
References

[1]   B. Mandelbrot: The fractal geometry of nature. Freeman, New York, USA, 1977.

[2]   P.S. Addison: Fractals and chaos: An illustrated course. IOP, Bristol, UK, 1997.

[3]   H.O. Peitgen, H. Jürgens and D. Saupe: Chaos and fractals. Springer, New York, USA, 1992.

[4]   J. Guckenheimer and P. Holmes: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, New York, USA, 1983.

[5]   M.C. Gutzwiller: Chaos in classical and quantum mechanics. Springer, New York, USA, 1990.

[6]   M. Schroeder: Number theory in science and communication: With applications in cryptographys, physics, digital information, computing and self similarity. Springer Verlag, Berlin, Germany, 2009.

[7]   L. Marek-Crnjac, M.S. El Naschie and J.-H. He: Chaotic fractals at the root of relativistic quantum physics and cosmology. International Journal of Modern Nonlinear Theory and Application, 2, 2013, pp. 78-88.

[8]   M.S. El Naschie: The concepts of E-infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics. Chaos, Solitons & Fractals, 22, 2004, pp. 495-511.

[9]   M.S. El Naschie: Silver mean Hausdorff dimension and Cantor sets. Chaos, Solitons & Fractals, 4(10), 1994, pp. 1861-1869.

[10]   M.S. El Naschie: A review of E-infinity theory and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals, 19(1), 2004, pp. 209-236.

[11]   M.S. El Naschie: Fuzzy dodecahedron topology and E-infinity spacetime as a model for quantum physics. Chaos, Solitons & Fractals, 30(5), 2006, pp. 1025-1033.

[12]   G. Iovane: Wave guiding and mirroring effects in stochastic self-similar ad Cantorian E-infinity Universe. Chaos, Solitons & Fractals, 23(3), 2005, pp. 691-700.

[13]   M.S. El Naschie: A guide to the mathematics of E-infinity Cantorian spacetime theory. Chaos, Solitons & Fractals, 25(5), 2005, pp. 955-964.

[14]   G. Iovane: Self-similar and oscillating solutions of Einstein’s equation and other relevant consequences of a stochastic self-similar and fractal universe via El Naschie’s E-infinity spacetime. Chaos, Solitons & Fractals, 23(2), 2005, pp. 351-360.

[15]   Y. Tanaka, Y. Mizuno and T. Kado: Chaotic dynamics in the Friedmann equation. Chaos, Solitons & Fractals, 24(2), 2005, pp. 407-422.

[16]   M.S. El Naschie: Nuclear spacetime theories, superstrings, monster group and applications, Chaos, Solitons & Fractals, 10(2-3), 1999, pp. 567-580.

[17]   M.S. El Naschie: Gravitational instanton in Hilbert space and the mass of high energy elementary particles. Chaos, Solitons & Fractals, 20(5), 2004, pp. 917-923.

[18]   P. Cilliers and D. Spurrett: Complexity and post-modernism: Understanding complex systems. South African Journal of Philosophy, 18(2), 1999, pp. 258-274.

[19]   E. Bertschinger: Self-similar secondary infall and accretion in an Einstein-de Sitter universe. The Astrophysical Journal Supplement Series, 58, 1985, pp. 39-66.

[20]   E. Bertschinger: Self-similar evolution of hole in an Einstein-de Sitter universe. The Astrophysical Journal Supplement Series, 58, 1985, pp. 1-37.

[21]   C.R. Evans and J.S. Coleman: Critical phenomena and self-similarity in the gravitational collapse of radiation fluid. Physical Review Letters, 72, 1994, pp. 1782-1785.

[22]   A. Ori and T. Piran: Naked singularities and other features of self-similar general-relativistic gravitational collapse. Physical Review D, 47, 1990, pp. 777-780.

[23]   A.J. Einstein, H.S. Wu and J. Gil: Self-affinity and lacunarity of chromatin texture in benign and malignant breast epithelial cell nuclei. Physical Review Letters, 80, 1998, pp. 397-400.

[24]   B.J. Carr and A.A. Coley: Self-similarity in general relativity. Classical and Quantum Gravity, 16(7), 1999, pp. R31-R71.

[25]   J.A. Fillmore and P. Goldreich: Self-similar gravitational collapse in an expanding universe. The Astrophysical Journal, 281, 1984, pp. 1-8.

[26]   M.S. El Naschie: On ‘t Hooft dimensional regularization in E-infinity space. Chaos, Solitons & Fractals, 12(5), 2001, pp. 851-858.

[27]   M.S. El Naschie: The VAK of vacuum fluctuation, spontaneous self organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos, Solitons & Fractals, 18(2), 2003, pp. 579-605.

[28]   M.S. El Naschie: Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology). Chaos, Solitons & Fractals, 30, 2006, pp. 579-605.

[29]   M.S. El Naschie: On a new elementary particle from the disintegration of the Symplectic ‘t Hooft-Veltman-Wilson fractal spacetime. World Journal of Nuclear Science and Technology, 4(4), 2014, pp. 216-221.

[30]   G. Iovane: El Naschie E-infinity Cantorian spacetime and length scales in cosmology. International Journal of Nonlinear Sciences and Numerical Similation, 7(2), 2006, pp. 155-162.

[31]   L. Marek-Crnjac, J.-H. He: An invitation to El Naschie’s theory of cantorian space-time and dark energy. International Journal of Astronomy and Astrophysics, 3(4), 2013, pp. 464-471.

[32]   A.R. El-Nabulsi: Fractional action-like variational problems in holonomic, non-holonomic and semi-holonomic constrained and dissipative dynamical systems. Chaos, Solitons & Fractals, 42(1), 2009, pp. 52-61.

[33]   A.R. El-Nabulsi: Fractional dynamics, fractional weak bosons masses and physics beyond the standard model. Chaos, Solitons & Fractals, 41(5), 2009, pp. 2262-2270.

[34]   M.S. El Naschie: The measure concentration of convex geometry in a quasi Banach spacetime behind the supposedly missing dark energy of the cosmos. American Journal of Astronomy & Astrophysics, 2(6), 2014, pp. 72-77.

[35]   M.S. El Naschie: A unified Newtonian-relativistic quantum resolution of supposedly missing dark energy of the cosmos and the constancy of the speed of light. International Journal of Modern Nonlinear Theory & Application, 2, 2013, pp. 43-54.

[36]   A.J. Babchin and M.S. El Naschie: On the real Einstein beauty E = kmc2. World Journal of Condensed Matter Physics, 6(1), 2016, pp. 1-6.

[37]   L. Marek-Crnjac: On El Naschie’s fractal-cantorian space-time and dark energy—A tutorial review. Natural Science, 7(13), 2015, pp. 581-598.

[38]   M.S. El Naschie: Casimir-dark energy nano reactor design proposal based on fractals. International Journal of Innovation is Science and Mathematics, 3(4), 2015, pp. 187-194.

[39]   M.S. El Naschie: The Counterintuitive increase of information due to extra spacetime dimensions of a black hole and Dvoretzky’s theorem. Natural Science, 7(10), 2015, pp. 483-487.

[40]   M.S. El Naschie: Application of Dvoretzky’s theorem of measure concentration in physics and cosmology. Open Journal of Microphysics, 5, 2015, pp. 11-15.

[41]   M.S. El Naschie: A resolution of the black hole information paradox via transfinite set theory. World Journal of Condensed Matter Physics, 5, 2015, pp. 249-260.

[42]   M.S. El Naschie: If quantum “wave” of the universe then quantum “particle” of the universe: A resolution of the dark energy question and the black hole information paradox. International Journal of Astronomy & Astrophysics, 5, 2015, pp. 243-247.

[43]   M.S. El Naschie: Quantum fractals and the Casimir-dark energy duality—The road to a clean quantum energy nano reactor. Journal of Modern Physics, 6, 2015, pp. 1321-1333.

[44]   M.S. El Naschie: From fusion algebra to cold fusion or from pure reason to pragmatism. Open Journal of Philosophy, 5(6), 2015, pp. 319-326.

[45]   M.S. El Naschie: The Casimir effect as a pure topological phenomenon and the possibility of a Casimir nano reactor—A preliminary design. American Journal of Nano Research and Application, 3(3), 2015, pp. 33-40.

[46]   R. Penrose: The road to reality. J. Cape, London, UK, 2004

[47]   S. Hawking and W. Israel: 300 years of gravitation. Cambridge University Press, Cambridge, UK, 1990.

[48]   S. Weinberg: Cosmology. Oxford University Press, Oxford, UK, 2008.

[49]   M. Helal, L. Marek-Crnjac and J.-H. He: The three page guide to the most important results of M.S. El Naschie’s research in E-infinity quantum physics. Open Journal of Microphysics, 3, 2013, pp. 141-145.

[50]   M.S. El Naschie: Why E is not equal mc2. Journal of Modern Physics, 5(9), 2014, pp. 743-750.

[51]   M.S. El Naschie: Experimentally based theoretical arguments that Unruh’s temperature, Hawking’s vacuum fluctuation and Rindler’s wedge are physically real. American Journal of Modern Physics, 2(6), 2013, pp. 357-361.

[52]   M.S. El Naschie: The hyperbolic extension of Sigalotti-Hendi-Sharifzadeh’s golden triangle of special theory of relativity and the nature of dark energy. Journal of Modern Physics, 4(3), 2013, pp. 354-356.

[53]   M.S. El Naschie: A Rindler-KAM spacetime geometry and scaling the planck scale solves quantum relativity and explains dark energy. International Journal of Astronomy and Astrophysics, 3(4), 2013, pp. 483-493.

[54]   M.S. El Naschie: Quantum entanglement: Where dark energy and negative, accelerated expansion of the universe comes from. Journal of Quantum Information Science, 3(2), 2013, pp 55-57.

[55]   M.S. El Naschie: Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics. Chaos, Solitons & Fractals, 32(3), 2007, pp. 911-915.

[56]   M.S. El Naschie: Elementary number theory in superstring loop quantum mechanics, twistors and E-infinity high energy physics. Chaos, Solitons & Fractals, 27(2), 2006, pp. 297-330.

[57]   M.S. El Naschie: A review of application and results of E-infinity. International Journal of Nonlinear Science & Numerical Simulation, 2007, 8(1), pp. 11-20.

[58]   M.S. El Naschie and A. Helal: Dark energy explained via the Hawking-Hartle quantum wave and the topology of cosmic crystallography. International Journal of Astronomy and Astrophysics, 3(3), 2013, pp. 318-343.

[59]   M.S. El Naschie: Cosmic dark energy from ‘thooft’s dimensional regularization and Witten’s topological quantum field pure gravity. Journal of Quantum Information Science, 4(2), 2014, pp. 83-91.

[60]   E.J. Copeland, M. Sami and S. Tsujikawa: Dynamics of dark energy. International Journal of Modern Physics D, 15(11), 2006, pp. 1753-1935.

[61]   M.S. El Naschie: Einstein-Rosen Bridge (ER), Einstein-Podolsky-Rosen Experiment (EPR) and Zero Measure Rindler-KAM Cantorian Spacetime Geometry (ZMG) are conceptually equivalent. International Journal of Quantum Information Science, 6(1), 2016, pp. 1-9.

[62]   M.S. El Naschie: From E = mc2 to E = mc2/22—A short account of the most famous equation in physics and its hidden quantum entangled origin. Journal of Quantum Information Science, 4, 2014, pp. 284-291.

[63]   M.S. El Naschie: What is the missing dark energy in a nutshell and the Hawking-Hartle quantum wave collapse. International Journal of Astronomy and Astrophysics, 3(3), 2013, pp. 205-211.

[64]   M.S. El Naschie: Superstrings, knots and noncommutative geometry in E-infinity space. International Journal of Theoretical Physics, 37(12), 1998, pp. 2935-2951.

[65]   M.S. El Naschie: Penrose universe and Cantorian spacetime as a model for noncommutative quantum geometry. Chaos, Solitons & Fractals, 1998, 9(6), pp. 931-933.

[66]   M.S. El Naschie: Topics in the mathematical physics of E-infinity theory. Chaos, Solitons & Fractals, 30(3), 2006, pp. 656-663.

[67]   M.S. El Naschie: Advanced prerequisites for E-infinity theory. Chaos, Solitons & Fractals, 30(12), 2006, pp. 636-641.

[68]   M.S. El Naschie: Intermediate prerequisites for E-infinity theory. Chaos, Solitons & Fractals, 30, 2006, pp. 622-628.

[69]   J.-H. He: Application of E-infinity theory to biology. Chaos, Solitons & Fractals, 28(2), 2006, pp. 285-289.

[70]   M.S. El Naschie: On the unification of heterotic strings, M theory and E (∞) theory. Chaos, Solitons & Fractals, 11(14), 2000, pp. 2397-2408.

[71]   M.S. El Naschie: On a class of general theories for higher energy particle physics. Chaos, Solitons & Fractals, 2002, 14, pp. 649-668.

[72]   M.S. El Naschie: Wild topology, hyperbolic geometry and fusion algebra of high energy particle physics. Chaos, Solitons & Fractals, 13(9), 2009, pp. 1935-1945.

[73]   M.S. El Naschie: The golden mean in quantum geometry, knot theory and related topics. Chaos, Solitons & Fractals, 10(8), 1999, pp. 1303-1307.

[74]   M.S. El Naschie: Quantum entanglement as a consequence of a Cantorian micro spacetime geometry. Journal of Quantum Information Science, 1, 2011, pp. 50-53.

[75]   M.S. El Naschie: Von Neumann geometry and E-infinity quantum spacetime. Chaos, Solitons & Fractals, 9(12), 1998, pp. 2023-2030.

[76]   A. Sangalli: The importance of being fuzzy. Princeton University Press, Princeton, USA, 1998.

[77]   S. Nanda and N.R. Das: Fuzzy mathematical concepts. Alpha Science, Oxford, UK, 2010.

[78]   A.B. Balachandran, S. Kürkcüoglu and S. Vaidya: Lectures on fuzzy and fuzzy susy physics. World Scientific, Singapore, 2007.

[79]   N. Palanippan: Fuzzy topology. Alpha Science, Pangbourne, UK, 2002.

[80]   M.S. El Naschie: Fuzzy knot theory interpretation of Yang-Mills instantons and Witten’s 5-Brane model. Chaos, Solitons & Fractals, 38(5), 2008, pp. 1349-1354.

[81]   M.S. El Naschie: Quantum gravity, Clifford algebras, fuzzy set theory and the fundamental constants of nature. Chaos, Solitons & Fractals, 20(3), 2004, pp. 437-450. M.S. El Naschie: The discrete charm of certain eleven dimensional space-time theory. International Journal of Nonlinear Sciences and Numerical Simulation, 7(4), 2006, pp. 407-409.

[82]   M.S. El Naschie: Fuzzy multi-instanton knots in the fabric of spacetime and Dirac’s vacuum fluctuation. Chaos, Solitons & Fractals, 38, 2008, pp. 1260-1268.

[83]   M.S. El Naschie, S. Olsen, J.-H. He, S. Nada, L. Marek-Crnjac and A. Helal: On the need for fractal logic in high energy quantum physics. International Journal of Modern Nonlinear Theory and Application, 21(3), 2012, pp. 84-92.

[84]   M.S. El Naschie: On the uncertainty of Cantorian geometry and the two-slit experiment. Chaos, Solitons & Fractals, 19(3), 1998, pp. 517-529.

[85]   M.S. El Naschie: On a fuzzy Kähler-like manifold which is consistent with the two slit experiment. International Journal of Nonlinear Sciences and Numerical Simulation, 6(2), 2005, pp. 95-98.

[86]   M.S. El Naschie: Transfinite harmonization by taking the dissonance out of the quantum field symphony. Chaos, Solitons & Fractals, 36, 2008, pp. 781-786.

[87]   M.S. El Naschie and L. Marek-Crnjac: Deriving the exact percentage of dark energy using a transfinite version of Nottale’s scale relativity. International Journal of Modern Nonlinear Theory and Application, 1, 2012, pp. 118-124.

[88]   M.S. El Naschie: Towards a quantum golden field theory. International Journal of Nonlinear Sciences and Numerical Simulation, 8(4), 2007, pp. 477-482.

[89]   M.S. El Naschie: Asymptotic freedom and unification in a golden quantum field theory. Chaos, Solitons & Fractals, 36(3), 2008, pp. 521-525.

[90]   M.S. El Naschie: An outline for a quantum golden field theory. Chaos, Solitons & Fractals, 37(2), 2008, pp. 317-323.

[91]   M.S. El Naschie: Extended renormalizations group analysis for quantum gravity and Newton’s gravitational constant. Chaos, Solitons & Fractals, 35, 2008, pp. 425-431.

[92]   J.-H. He and L. Marek-Crnjac: The quintessence of El Naschie’s theory of fractal relativity and dark energy. Fractal Spacetime and Noncommutative Geometry in Quantum & High Energy Physics, 3(2), 2013, pp. 130-137.

[93]   M.S. El Naschie: Quantum golden field theory—Ten theorems and various conjectures. Chaos, Solitons & Fractals, 36, 2008, pp. 1121-1125.

[94]   M.S. El Naschie: Transfinite electrical networks, spinoral varieties and gravity Q bits. International Journal of Nonlinear Sciences and Numerical Simulation, 5(3), 2004, pp. 191-198.

[95]   M.S. El Naschie: Quantum gravity from descriptive set theory. Chaos, Solitons & Fractals, 19(5), 2004, pp. 1339-1344.

[96]   M.S. El Naschie: On a transfinite symmetry group with 10 to the power of 19 dimensions. Chaos, Solitons & Fractals, 36(3), 2008, pp. 539-541.

[97]   M.S. El Naschie: On dualities between Nordstrom-Kaluza-Klein, Newtonian and quantum gravity. Chaos, Solitons & Fractals, 36(4), 2008, pp. 808-810.

[98]   M.S. El Naschie: The quantum gravity Immirzi parameter—A general physical and topological interpretation. Gravitation and Cosmology, 19(3), 2013, pp. 151-155.

[99]   M.S. El Naschie: High energy physics and the standard model from the exceptional Lie groups. Chaos, Solitons & Fractals, 36(1), 2008, pp. 1-17.

[100]   C. Castro: Quantum space-time infinite dimensional. Chaos, Solitons & Fractals, 11(11), 2000, pp. 1663-1670.

[101]   M.S. El Naschie: The exceptional Lie symmetry groups hierarchy and the expected number of Higgs bosons. Chaos, Solitons & Fractals, 35(2), 2008, pp. 268-273.

[102]   M.S. El Naschie: Exceptional Lie groups hierarchy and the structure of the micro universe. International Journal of Nonlinear Sciences and Numerical Simulation, 8(3), 2007, pp. 445-450.

[103]   M.S. El Naschie: Notes on exceptional Lie groups hierarchy and possible implications for E-infinity. Chaos, Solitons & Fractals, 35(1), 2008, pp. 67-70.

[104]   M.S. El Naschie: Symmetry group prerequisite for E-infinity in high energy physics. Chaos, Solitons & Fractals, 35(1), 2008, pp. 202-211.

[105]   M.S. El Naschie: Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime. Chaos, Solitons & Fractals, 38(4), 2008, pp. 990-992.

[106]   G.I. Barrenblatt: Scaling. Cambridge University Press, Cambridge, UK, 2003.

[107]   A. Connes: Noncommutative geometry. Academic Press, San Diego, USA, 1994 (see in particular pages 88-93).

[108]   M. Nakahara: Geometry, topology and physics. Second Edition, Tayler and Francis, New York, USA, 2003.

[109]   J. Sampo and P. Luukka: Similarity classifier with generalized mean: Ideal vector approach in “Fuzzy Systems and Knowledge Discovery”. Series Lecture Notes in Computer Sciences, 4423, 2006, pp. 1140-1147.

[110]   P. Lukka: Similarity classifier using similarities based on modified probabilistic equivalence relation. Knowledge Based Systems, 22(1), 2009, pp. 57-62.

[111]   S.K. Parhi: Modification of generalization of equivalence relation. IOSR Journal of Mathematics, 9(1), 2013, pp. 70-73.

[112]   F.D. Peat: Superstrings. Abacus Books, London, UK, 1988.

[113]   W. Heisenberg: Der Teil und das Ganze. Piper-Verlag, Munich, Germany, 1969.

[114]   M.S. El Naschie: Stress, stability and chaos in structural engineering: An energy approach. McGraw Hill, London, UK, 1990.

[115]   M.S. El Naschie: Mathematical models and methods in dark energy theory: Dvoretzky’s theorem, Casimir effect, Mobius geometry. Problems of Nonlinear Analysis in Engineering Systems, 2(44), 2015, pp. 1-16. University of Kazan Press, Russia. (Published in Russian and English language versions).

[116]   M.S. El Naschie: Asymptotically safe pure gravity as the source of dark energy of the vacuum. International Journal of Astrophysics and Space Science, 2(1), 2014, pp. 12-15.

[117]   M.S. El Naschie: Compactified dimensions as produced by quantum entanglement, the four dimensionality of Einstein’s smooth spacetime and ‘tHooft’s 4-ε fractal spacetime. American Journal of Astronomy and Astrophysics, 2(3), 2014, pp. 34-37.

[118]   M.S. El Naschie: The self referential pointless universe geometry as the key to the resolution of the black hole information paradox. International Journal of Innovation in Science & Mathematics, 3(5), 2016, pp. 254-256.

[119]   T. Willmore: Riemannian geometry. Oxford University Press, Oxford, UK, 1993.

[120]   R. Gilmore: Lie groups, physics and geometry. Cambridge University Press, Cambridge, UK, 2008.

[121]   G. ‘tHooft: In search of the ultimate building blocks. Cambridge University Press, Cambridge, UK, 1997.

[122]   G. ‘tHooft: 50 years of Yang-Mills theory. World Scientific, Singapore, 2005.

[123]   G. ‘tHooft: Under the spell of gauge principle. World Scientific, Singapore, 1994.

[124]   M. Duff (Editor): The world in eleven dimensions. IOP Publishing, Bristol, UK, 1999.

[125]   D. Freedman and A. van Proeyen: Super gravity. Cambridge University Press, Cambridge, UK, 2004.

[126]   P. West: Introduction to strings and branes. Cambridge University Press, Cambridge, UK, 2012.

[127]   L. Smolin: Three roads to quantum gravity. Weindenfeld & Nicolson, London, UK, 2000.

[128]   J. Magueijo: Faster than the speed of light. William Heinemann, London, UK, 2003.

[129]   L. Susskind: The black hole war. Back Bay Books, New York, USA, 2008.

[130]   Supernova Search Team Collaborations. A.G. Reiss et al: Observation Evidence from supernova for an accelerating Universe and a Cosmological constant. The Astronomical Journal, 116, 1998, pp. 1009-1038.

[131]   Supernova Cosmology Project Collaboration. S. Perlmutter et al: Measurements of Omega and Lambda from 42 High-Redshift Supernova. The Astronomical Journal, 517, 1999, pp. 565-585.

[132]   G.F. Smoot et al: Structure in the COBE differential microwave radiometer first year maps. The Astronomical Journal, 396, 1992, pp. L1-L5.

[133]   M. Tegmark: Measuring cosmological parameters with galaxy surveys. Physics Review Letters, 79, 1997, pp. 3806-3809.

[134]   W. Rindler: Relativity (Special, general and cosmological). Second Edition, Oxford University Press, Oxford, UK, 2006.

[135]   D. Gross et al: Heterotic string theory (1). The free Heterotic string. Nuclear Physics B, 256, 1985, pp. 253-284.

[136]   F. Macdonald: It’s official: Gravitational wave have been detected, Einstein was right. Science Alert, 11 February 2016.

 
 
Top