Back
 JAMP  Vol.4 No.3 , March 2016
Fermi-Dirac and Bose-Einstein Integrals and Their Applications to Resistivity in Some Magnetic Alloys, Part III
Abstract: The Fermi-Dirac (FD) and Bose-Einstein (BE) integrals were applied to a quantum system to estimate the density of particles and relaxation time in some magnetic alloys at low temperatures. An integral part in the energy equations of vibrations (phonons), spin waves (magnons), and electrons was mathematically treated. Comparison between theoretical and experimental results gave good semi-empirical relations and some physical constants.
Cite this paper: Al-Jalali, M. and Mouhammad, S. (2016) Fermi-Dirac and Bose-Einstein Integrals and Their Applications to Resistivity in Some Magnetic Alloys, Part III. Journal of Applied Mathematics and Physics, 4, 493-499. doi: 10.4236/jamp.2016.43055.
References

[1]   Al-Jalali, M.A. and Mouhammad, S.A. (2015) Phonons Bloch-Grüneisen Function and Its Applications to Noble Metals Resistivity, Part I. International Journal of Pure and Applied Mathematics, 102, 233-245.
http://dx.doi.org/10.12732/ijpam.v102i2.6

[2]   Al-Jalali, M.A. (2015) Contributions of Debye Functions to Bosons and Its Applications on Some nd Metals, Part II. International Journal of Pure and Applied Mathematics, 102, 429-445.
http://dx.doi.org/10.12732/ijpam.v102i3.3

[3]   Selvaggi, J.A., Selvaggi, J.P. and York, N. (2012) The Analytical Evaluation of the Half-Order Fermi-Dirac Integrals. The Open Mathematics Journal, 5, 1-7.

[4]   Cvijovi, D. (2009) Fermi-Dirac and Bose-Einstein Functions of Negative Integer Order. Theoretical and Mathematical Physics, 161, 1663-1668.
http://dx.doi.org/10.1007/s11232-009-0153-9

[5]   Chaudhry, M.A. and Qadir, A. (2007) Operator Representation of Fermi-Dirac and Bose-Einstein Integral Functions with Applications. International Journal of Mathematics and Mathematical Sciences, 2007, 1-9.
http://dx.doi.org/10.1155/2007/80515

[6]   Millev, Y. (1996) Bose-Einstein Integrals and Domain Morphology in Ultrathin Ferromagnetic Films with Perpendicular Magnetization. Journal of Physics: Condensed Matter, 8, 3671-3676.
http://dx.doi.org/10.1088/0953-8984/8/20/013

[7]   Goedecker, S. (1993) Integral Representation of the Fermi Distribution and Its Applications Calculations in Electronic-Structure. Physical Review B, 48, 17573-17575.
http://dx.doi.org/10.1103/PhysRevB.48.17573

[8]   Temme, N.M. and Olde Daalhuis, A.B. (1990) Uniform Asymptotic Approximation of Fermi-Dirac Integrals. Journal of Computational and Applied Mathematics, 31, 383-387.
http://dx.doi.org/10.1016/0377-0427(90)90038-2

[9]   Swenson, R.J. (1968) Evaluation of Fermi and Bose Integrals. Physics Letters, 26A, 632-633.
http://dx.doi.org/10.1016/0375-9601(68)90164-3

[10]   Dingle, R.B. (1957) The Fermi-Dirac Integrals. Applied Scientific Research, Section B, 6, 225-239.
http://dx.doi.org/10.1007/BF02920379

[11]   Kittel, C. (1987) Quantum Theory of Solids. John Wiley & Sons, Inc., New York.

[12]   Varshney, D., Mansuri, I. and Khan, E. (2013) Phonon, Magnon and Electron Contributions to Low Temperature Specific Heat in Metallic State of La0.85Sr0.15MnO3 and Er0.8Y0.2MnO3 Manganites. Bulletin of Materials Science, 36, 1255-1260.
http://dx.doi.org/10.1007/s12034-013-0602-9

[13]   Dove, M.T. (2010) Introduction to Lattice Dynamics, Part of Cambridge Topics in Mineral Physics and Chemistry.

[14]   McQuarrie, D.A. (2000) Statistical Mechanics. University Science Books, Sausalito, 55.

[15]   Stern, E.A. (1972) Fermi Level in Disordered Alloys. Physical Review B, 5, 366-371.
http://dx.doi.org/10.1103/PhysRevB.5.366

[16]   Deshpande, S.D., Sarode, P.R. and Mande, C. (1991) Study of the Fermi Level in Disordered Aluminium-Manganese Alloys by X-Ray Absorption Spectroscopy. Philosophical Magazine Part B, 64, 591-597.
http://dx.doi.org/10.1080/13642819108217883

[17]   Noh, H.-J., Nahm, T.-U., Kim, J.-Y., Park, W.-G., Oh, S.-J., Hong, J.-P. and Kim, C.-O. (2000) Depletion of the Density of States near the Fermi Energy Induced by Disorder and Electron Correlation in Alloys. Solid State Communications, 116, 137-141.
http://dx.doi.org/10.1016/S0038-1098(00)00301-X

[18]   Sevilla, F.J. and Olivares-Quiroz, L. (2011) Revisiting the Concept of Chemical Potential in Classical and Quantum Gasses: A Perspective from Equilibrium Statistical Mechanics.
http://arxiv.org/abs/1104.2611

[19]   Ashcroft, N.W. and Mermin, D. (2003) Solid State Physics. India Edition.

[20]   Al-Jalali, M.A. (2014) Temperature Dependence Behavior of Electrical Resistivity in Noble Metals at Low Temperatures. Journal of Advances in Physics, 5, 982-92.

[21]   Al-Jalali, M.A. (2014) The Critical Temperature-Concentration Phase Diagrams in Some Kondo and Spin Glass Alloys. International Journal of Physics and Research (IJPR), 4, 9-24.

[22]   Al-Jalali, M.A. (2014) Phenomenon of Maximum and Minimum in the Resistivity of Cu-Mn Kondo Alloys at Low Temperatures. American Journal of Physics and Applications, 2, 78-82.
http://dx.doi.org/10.11648/j.ajpa.20140203.12

[23]   Al-Jalali, M.A. (2014) Phenomenological Analysis of the s-d Exchange Interaction in Dilute Cu-Mn Alloy at Helium Temperature. Advanced Materials Letters, 5, 14-16.

[24]   Matula, R.A. (1979) Electrical Resistivity of Copper, Gold, Palladium, and Silver. Journal of Physical and Chemical Reference Data, 8, 1147-1298.
http://dx.doi.org/10.1063/1.555614

[25]   Ho, C.Y., Ackerman, M.W., Wu, K.Y., Havill, T.N., Bogaard, R.H., Matula, R.A., Oh, S.G. and James, H.M. (1983) Electrical Resistivity of Ten Binary Alloy Systems. Journal of Physical and Chemical Reference Data, 12, 183-322.
http://dx.doi.org/10.1063/1.555684

[26]   Campbell, I.A., Ford, P.J. and Hamzic, A. (1982) Resistivity of Spin-Glasses. Physical Review B, 26, 51950-5206.
http://dx.doi.org/10.1103/PhysRevB.26.5195

 
 
Top