Back
 OJIC  Vol.1 No.2 , July 2011
A fluorescence turn-on Hg2+ probe based on rhodamine with excellent sensitivity and selectivity in living cells
Abstract: A highly sensitive and selective Hg2+ probe 4 based on rhodamine-b was developed and characterized. In consideration of environmental and biological application, we connected a water soluble receptor group (sulfonated β-naphtol) and rhodamine-b together through hydrazine hydrate in high yield. The result turns out that this compound not only exhibits excellent sensitivity and selectivity toward Hg2+, but also shows well cell permeability and compatibility in vitro.
Cite this paper: nullJiang, L. , Wang, L. , Zhang, B. , Yin, G. and Wang, R. (2011) A fluorescence turn-on Hg2+ probe based on rhodamine with excellent sensitivity and selectivity in living cells. Open Journal of Inorganic Chemistry, 1, 16-22. doi: 10.4236/ojic.2011.12003.
References

[1]   Domaille, D. W., Que. E.-L., Chang, C.-J. (2008) HSynthetic fluorescent sensors for studying the cell biology of metalsH, Nature Chemical Biology, 4, 168-175.

[2]   Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy. Plenum, New York.

[3]   Adamczyk, M., Grote, J. (2001) Efficient fluorescein spirolactam and bis-spirolactam synthesis, Synthetic Communications, 31, 2681-2690.

[4]   Moadhena, A., Elhouicheta, H., Nosovab, L., Oueslatia, M. (2007) HRhodamine B absorbed by anodic porous alumina: Stokes and anti-Stokes luminescence studyH, Journal of Luminescence, 126, 789-794.

[5]   Kim, H. N., Lee, M. H., Kim, H. J., Kim, J. S., Yoon, J. (2008) HA new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ionsH, Chemical Society Reviews, 37, 1465-1472.

[6]   Dujols, V., Ford, F., Czarnik, A. W. (1997) A Hlong-wavelength fluorescent chemodosimeter selective for Cu(II) ion in waterH, Journal of the American Chemical Society, 119, 7386-7387.

[7]   Yang, Y. K., Yook, K. J., Tae, J. (2005) A Hrhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous mediaH, Journal of the American Chemical Society, 127, 16760-16761.

[8]   Kwon, J. Y., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W., Yoon, J. (2005) A Hhighly selective fluorescent chemosensor for Pb2+H, Journal of the American Chemical Society, 127, 10107-10111.

[9]   Xiang, Y., Tong, A., Jin, P., Ju, Y. (2006) New Hfluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivityH, Organic Letters, 8, 2863-2866.

[10]   Shiraishi, Y., Miyamoto, R., Zhang, X., Hirai, T. (2007) RhoHdamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature rangeH, Organic Letters, 9, 3921-3924.

[11]   Wu, J.-S., Hwang, I. C., Kim, K. S., Kim, J. S. (2007) Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution: Fluorescent OFF?ON, Organic Letters, 9, 907-910.

[12]   Soh, J. H., Swamy, K. M. K., Kim, S. K., Kim, S., Leec, S. H., Yoon, J. (2007) HRhodamine urea derivatives as fluorescent chemosensors for Hg2+H, Tetrahedron Letters, 48, 5966-5969.

[13]   Lee, M. H., Lee, S. J., Jung, J. H., Lim, H., Kim, J. S. (2007) Luminophore-immobilized mesoporous silica for selective Hg2+ sensing, Tetrahedron, 63, 12087-12092.

[14]   Zhang, X., Shiraishi, Y., Hirai, T. (2007) Cu H(II)-selective green fluorescence of a rhodamine?diacetic acid conjugateH, Organic Letters, 9, 5039-5042.

[15]   Lee, M. H., Wu, J. S., Lee, J. W., Jung, J. H., Kim, J. S. (2007) HighHly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophoreH, Organic Letters, 9, 2501-2504.

[16]   Wu, D., Huang, W., Duan, C., Lin, Z., Meng, Q. (2007) HiHghly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous mediaH, Inorganic Chemistry, 46, 1538-1540.

[17]   Chen, X., Li, Z., Xiang, Y., Tong, A. (2008) SaHlicylaldehyde fluorescein hydrazone: a colorimetric logic chemosensor for pH and Cu(II)H, Tetrahedron Letters, 49, 4697-4700.

[18]   Lee, M. H., Kim, H. J., Yoon, S., Park, N., Kim, J. S. (2008) MeHtal ion induced FRET OFF?ON in tren/dansyl-appended rhodamineH, Organic Letters, 10, 213-216.

[19]   Huang, J., Xu, Y., Qian, X. (2009) A Hrhodamine-based Hg2+ sensor with high selectivity and sensitivity in aqueous solution: a NS2-containing receptorH, Journal of Organic Chemistry, 74, 2167-2170.

[20]   Zhou, Y., Wang, F., Kim, Y., Kim, S. J., Yoon, J. (2009) CuH2+-selective ratiometric and “Off-On” sensor based on the rhodamine derivative bearing pyrene groupH, Organic Letters, 11, 4442-4445.

[21]   Wu, C., Zhang, W.-J., Zeng, X., Mu, L., Xue, S. F., Tao, Z., Yamato, T. (2010) New Hfluorescent sensor for antimony and transition metal cations based on rhodamine amide-arm homotrioxacalix[3]areneH, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 66, 125-131.

[22]   Kang, S., Kim, S., Yang, Y. K., Bae, S., Tae, J. (2009) FluHorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazidesH, Tetrahedron Letters, 50, 2010-2012.

[23]   Stephensona, C. J., Shimizu, K. D. (2010) A fluorescent diastereoselective molecular sensor for 1, 2-aminoalcohols based on the rhodamine B lactone–zwitterion equilibrium, Organic and Biomolecular Chemistry, 8, 1027-1032.

[24]   Zhang, X., Xiao, Y., Qian, X. (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells, Angewandte Chemie-International Edition, 47, 8025-8029.

[25]   Huang, K., Yang, H., Zhou, Z., Yu, M., Li, F., Gao, X., Yi, T., Huang, C. (2008) MulHtisignal chemosensor for Cr3+ and its application in bioimagingH, Organic Letters, 10, 2557-2560.

[26]   Huang, W., Zhou, P., Yan, W., He, C., Xiong, L., Li, F., Duan, C. (2009) HA bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and living cellsH, Journal of Environmental Monitoring, 11, 330-335.

[27]   Suresh, M., Mishra, S., Mishra, S. K., Suresh, E., Mandal, A. K., Shrivastav, A., Das, A. (2009) ReHsonance energy transfer approach and a new ratiometric probe for Hg2+ in aqueous media and living organismH, Organic Letters, 11, 2740-2743.

[28]   Du, J., Fan, J., Peng, X., Sun, P., Wang, J., Li, H., Sun, S. (2010) A Hnew fluorescent chemodosimeter for Hg2+: selectivity, sensitivity, and resistance to Cys and GSHH, Organic Letters, 12, 476-479.

[29]   Ko, S. K., Yang, Y. K., Tae, J., Shin, I. (2006) In Hvivo monitoring of mercury ions using a rhodamine-based molecular probeH, Journal of the American Chemical Society, 128, 14150-14155.

[30]   Chen, X., Nam, S. W., Jou, M. J., Kim, Y., Kim, S. J., Park, S., Yoon, J. (2008) HgH2+ selective fluorescent and colorimetric sensor: Its crystal structure and application to bioimagingH, Organic Letters, 10, 5235-5238.

[31]   Yang, Y. K., Ko, S. K., Shin, I., Tae, J. (2009) HFluorescent detection of methylmercury by desulfurization reaction of rhodamine hydrazide derivativesH, Organic and Biomolecular Chemistry, 7, 4590-4593.

[32]   Harada, M. (1995) Minamata disease-methylmercury poisoning in Japan caused by environmental-pollution, Critical Reviews in Toxicology, 25, 1-24.

[33]   de Silva, A. P., Gunaratne, H. Q. N., Gunnlaugsson, T., Huxley, A. J. M., McCoy, C. P., Rademacher, J. T., Rice, T. E. (1997) SigHnaling recognition events with fluorescent sensors and switchesH, Chemical Reviews, 97, 1515-1566.

[34]   Grandjean, P., Weihe, P., White, R. F., Debes, F. (1998) CoHgnitive performance of children prenatally exposed to “Safe” levels of methylmercuryH, Environmental Research, 77, 165-172.

[35]   Piao, X., Zou, Y., Wu, J., Li, C., Yi, T. (2009) MultiHresponsive switchable diarylethene and its application in bioimagingH, Organic Letters, 11, 3818-3821.

[36]   Huo, F.-J., Sun, Y.-Q., Su, J., Yang, Y.-T., Yin, C.-X., Chao, J.-B. (2010) Chromene “Lock”, thiol “Key”, and mercury(II) ion “Hand”: a single molecular machine recognition system, Organic Letters, 12, 4756-4759.

[37]   Jiang, L., Zhang, B., Sun, J. Yin, G., Shang, T-M., Wang, L., Wang, R.-Y. (2010) Duan channel rhodamine based colorimetric fluorescent probe for Cu2+ in living cells, Chinese Journal of Inorganic Chemistry, 26, 1750-1755.

[38]   Jiang, L., Wang, L., Guo, M., Yin G., Wang, R.-Y. (2011) Fluorescene turn-on of easily prepared fluorescein derivatives by zinc cation in water and living cells, Sensors & Actuators: B. Chemical, doi: H10.1016/j.snb.2011.02.048H.

[39]   Dierdre, A. P., Nathalie, J., Isaac, S. C. (2001) DeHrivatives of 8-hydroxy-2-methylquinoline are powerful prototypes for zinc sensors in biological systemsH, Journal of the American Chemical Society, 123, 5160-5161.

[40]   Jiang, L., Wang, L., Zhang, B., Yin, G., Wang, R.-Y. (2010) HCell compatible fluorescent chemosensor for Hg2+ with high sensitivity and selectivity based on the rhodamine fluorophoreH. European Journal of Inorganic Chemistry, 4438-4443.

[41]   Schulz, J. B., Lindenau, J., Seyfried, J., Dichgans, J. (2000) Glutathione, oxidative stress and neurodegeneration, European Journal of Biochemistry, 267, 4904-4911.

 
 
Top