[1] Bohr, D. and Bub, J. (1966) A proposed solution of the measurement problem in quantum mechanics. Review of morden Physics, 6, 453-469. doi:10.1103/RevModPhys.38.453
[2] Schr?dinger, E. (1935) Die gegenwartige situation in der quantenmechanik, Naturwissenschaften, 23, 807-812; 823-828; 844-849. doi:10.1007/BF01491891
[3] Schr?dinger, E. (1935) The present situation in quantum mechanics, a translation of translation of Schrodinger. Proceedings of the American Philosophical Society, 124, 323-338.
[4] Schr?dinger, E. (1926) An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28, 1049-1070. doi:10.1103/PhysRev.28.1049
[5] Heisenberg, W. Z. (1925) über die quantentheoretische umdeu- tung kinematischer und mechanischer beziehungen. Zeitschrift der Physik, 33, 879-893. doi:10.1007/BF01328377
[6] Heisenberg, W. and Euler, H. (1936) Folgerungen aus der Diracschen Theorie des Positrons. Physics and Astronomy, 98, 714-732. doi:10.1007/BF01343663
[7] Born, M. and Infeld, L. (1934) Foundations of the New Field Theory, Proceedings of the American Philosophical Society, 144, 425.
[8] Dirac, P.A.M. (1948) Quantum Theory of Loca- lizable Dynamical Systems, Physical Review, 73, 1092. doi:10.1103/PhysRev.73.1092
[9] Diner, S., Farque, D., Lochak, G., and Selleri, F. (1984) The wave-particle dualism. Riedel, Dordrecht.
[10] Ferrero, M. and Van der Merwe, A. (1997) New developments on fundamental problems in quantum physics. Kluwer, Dordrecht.
[11] Ferrero, M. and Van der Merwe, A. (1995) Fundamental problems in quantum physics. Kluwer, Dordrecht.
[12] de Broglie, L., (1960) Nonlinear wave mechanics: A causal interpretation, Elsevier, Amsterdam.
[13] de Broglie, L., (1955) Une interpretation nouvelle de la mechanique ondulatoire: est-elle possible?, Nuovo Cimento, 1, 37-50.
[14] Bohm, D. A. (1952) Suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Phys. Rev. 85, 166-180.
[15] Potter, J. (1973) Quantum mechanics. North-Holland publishing Co. Amsterdam.
[16] Jammer, M. (1989) The concettual development of quantum mechanics. Tomash Publishers, Los Angeles.
[17] Einstein, A., Podolsky, B. and Rosen, N. (1935) The appearance of this work motivated the present – shall I say lecture or general confession? Physical. Review, 47, 777-780. doi:10.1103/PhysRev.47.777
[18] Einstein, A.P., (1979) A centenary Volume. Harvard University Press, Cambridge.
[19] Pang, X.F. (1985) Problems of nonlinear quantum mechanics. Sichuan Normal University Press, Chengdu.
[20] Pang, X.F. (2008) The Schrodinger equation only descry- bes approximately the properties of motion of micro- scopic particles in quantum mechanics. Nature Sciences, 3, 29.
[21] Pang, X.F. (1985) The fundamental principles and theory of nonlinear quantum mechanics. China Journal of Potential Science, 5, 16.
[22] Pang, X.F. (1982) Macroscopic quantum mechanics. China Nature Journal, 4, 254.
[23] Pang, X.F. (1986) Bose-condensed properties in supercon-ducors. Journal of Science Exploration, 4, 70.
[24] Pang, X.F. (1991) The theory of nonlinear quantum mechanics: In research of new sciences, Science and Techbology Press, 16-20.
[25] Pang, X.F. (2008) The wave-corpuscle duality of microscopic particles depicted by nonlinear Schrodinger equation. Physica B, 403, 4292-4300. doi:10.1016/j.physb.2008.09.031
[26] Pang, X.F. (2008) Features and states of microscopic particles in nonlinear quantum–mechanics systems. Frontiers of physics in China, 3, 413.
[27] Pang, X.F. (2005) Quantum mechanics in nonlinear systems. World Scientific Publishing Co., Singapore. doi:10.1142/9789812567789
[28] Pang, X.F. (2009) Nonlinear quantum mechanics. china electronic industry press, Beijing.
[29] Pang, X.F. (1994) The Theory of nonlinear quantum mechanics. Chinese Chongqing Press, Chongqing.
[30] Pang, X.F. (2006) Establishment of nonlinear quantum mechanics. Research and Development and of World Science and Technology, 28, 11.
[31] Pang, X.F. (2003) Rules of motion of microscopic particles in nonlinear systems. Research and Development and of World Science and Technology, 24, 54.
[32] Pang, X.F. (2006) Features of motion of microscopic particles in nonlinear systems and nonlinear quantum mechanics in sciencetific proceding-physics and others. Atomic Energy Press, Beijing.
[33] Parks, R. D. (1969) Superconductivity. Marcel, Dekker.
[34] Josephson, D. A. (1965) Josephson, Supercurrents through barriers, Advanced Physics, 14, 39-451.
[35] Suint-James, D. et al., (1966), Type-II superconductivity, Pergamon, Oxford.
[36] Bardeen, L.N., Cooper L.N. and Schrieffer, J. R. (1957) Superconductivity theory. Physical Review, 108, 1175-1204. doi:10.1103/PhysRev.108.1175
[37] Barenghi, C.F., Donnerlly, R.J. and Vinen, W.F. (2001) Quantized vortex dynamics and superfluid turbulence. Springer, Berlin. doi:10.1007/3-540-45542-6
[38] Donnely, R.J. (1991) Quantum vortices in heliem II. Cambridge University Press, Cambridge.
[39] Pang, X.F. (2003) Soliton physics. Sichuan Science and Technology Press, Chengdu.
[40] Guo, B.L. and Pang, X.F. (1987) Solitons. Chinese Science Press, Beijing.
[41] Zakharov, V.E. and Shabat, A.B. (1972) Exact theory of two-dimensional self-focusing and one-dimensional self- domulation of wave in nonlinear media. Soviet Physics JETP, 34, 62.
[42] Zakharov, V.E. and Shabat, A.B. (1973) Interaction between solitons in a stable medium. Soviet Physics JETP, 37, 823
[43] Lax, P.D., (1992) Integrals of nonlinear equations of evolution and solitary waves, Cambridge University Press, Cambridge, pp. 107-351
[44] Pang, X.F. (2010) Collision properties of microscopic particles described by nonlinear Schrodinger equation. International Journal of Nonlinear science and numerical Simulation, 11, 1069-1075.
[45] Stiefel, J. (1965) Einfuhrung in die numerische mathematik. Teubner Verlag, Stuttgart.
[46] Atkinson, K.E. (1987) An Introdution to numerical analysis. Wiley, New York.
[47] Pang, X.F. (2009) Uncertainty features of microscopic particles described by nonlinear Schr?dinger equation. Physica B, 405, 4327-4331. doi:10.1016/j.physb.2009.08.027
[48] Glanber, R.J. (1963) Coherent and incoherent states of the radiation field. Physical Review, 13, 2766-2788. doi:10.1103/PhysRev.131.2766
[49] Davydov, A. S. (1985) Solitons in molecular systems. D. Reidel Publishing, Dordrecht.
[50] Pang, X.F. (2008) Properties of nonadiabatic quantum fluctuations for the strongly coupled electron-phonon system. Science in China Series G, 51, 225-336.
[51] Pang, X.F. (1999) Influence of the soliton in anharmonic molecular crystals with temperature on Mossbauer effect. European Physical Journal B, 10, 415. doi:10.1007/s100510050871
[52] Pang, X.F. (2001) The lifetime of the soliton in the improved Davydov model at the biological temperature 300K for protein molecules. Physics and Astronomy, 19, 297-316. doi:10.1007/s100510170339
[53] Pang, X.F. (1990) The properties of collective excitation in organic protein molecular system. Journal of Physics: Condensed Matter, 2, 9541. doi:10.1088/0953-8984/2/48/008