JMP  Vol.2 No.7 , July 2011
Influence of C-Axis Inter Unit Cell Resonant Tunneling on the Spectral Function in Bilayer Cuprates
ABSTRACT
The role of intra unit cell coupling along with inter unit cell resonant tunneling between the copper-oxygen planes on the electronic spectral function in normal state of bilayer high Tc cuprates like Bi2Sr2CaCu2O8+x is investigated. The Hubbard model including terms representing hopping between the planes within the unit cell, and resonant tunneling between the planes in two adjoining cells is used along with the Green’s function equation of motion approach to obtain an expression of spectral function. The spectral function at (&#960,0) point of the Brillouin zone is numerically calculated. It is found that the intra unit cell coupling lead to splitting of spectral peak especially close to (&#960,0) point, while the inter unit cell resonant tunneling lead to a broadening in the spectral function and suppression of bilayer splitting in the normal state. In the presence of finite electron correlations the inter unit cell tunneling induce strong broadening in the spectral features. The electron correlations and inter unit cell tunneling is important in determining the shape of the spectral function in doped bilayer cuprates. These results are viewed in terms of the existing ARPES measurements on bilayer cuprates.

Cite this paper
nullA. -, B. Tewari and G. -, "Influence of C-Axis Inter Unit Cell Resonant Tunneling on the Spectral Function in Bilayer Cuprates," Journal of Modern Physics, Vol. 2 No. 7, 2011, pp. 759-765. doi: 10.4236/jmp.2011.27088.
References
[1]   M. R. Norman and C. Pepin, “The Electronic Nature of High Temperature Cuprate Superconductors,” Reports on Progress in Physics, Vol. 66, No. 10, September 2003, p. 1547. doi:10.1088/0034-4885/66/10/R01

[2]   A. Damascelli, Z. Hussain and Z. X. Shen, “Angle-Resolved Photoemission Studies of the Cuprate Superconductors,” Reviews of Modern Physics, Vol. 75, No. 2, April 2003, pp. 473-541. doi:10.1103/RevModPhys.75.473

[3]   D. L. Feng, N. P. Armitage, D. H. Lu, A. Damascelli, J. P. Hu, P. Bogdanov, A. Lanzara, F. Ronning, K. M. Shen, H. Eisaki, C. Kim, J. I. Shinoyama, H. Kishio and Z.-X. Shen, “Bilayer Splitting in the Electronic Structure of Heavily Overdoped Bi2Sr2CaCu2O8+δ,” Physical Review Letters, Vol. 86, No. 24, June 2001, pp. 5550-5553. doi:10.1103/PhysRevLett.86.5550

[4]   D. L. Feng, A. Damascelli, K. M. Shen, N. Motoyama, D. H. Lu, H. Eisaki, K. Shimizu, J.-I. Shimoyama, K. Kishio, N. Kaneko, F. Ronning, N. P. Armitage and Z.-X .Shen, “Electronic Structure of the Trilayer Cuprate Superconductor Bi2Sr2Ca2Cu3O10+δ,” Physical Review Letters, Vol. 88, No. 10, February 2002, Article ID: 107001.

[5]   Y. D. Chaung, A. D. Gromko, A. Fedorov, Y. Aiura, K. Oka, Y. Ando, H. Eisaki, S. I. Uchida and D. S. Dessau, “Doubling of the Bands in Overdoped Bi2Sr2CaCu2O8+δ: Evidence for c-Axis Bilayer Coupling,” Physical Review Letters, Vol. 87, No. 11, August 2001, Article ID: 117002.

[6]   A. A. Kordyuk, S. V. Borisenko, T. K. Kim, K. Nenkov, M. Knupfer, M. S. Golden, J. Fink, H. Berger, R. Follath, “Origin of the Peak-Dip-Hump Line Shape in the Superconducting—State (π, 0) Photoemission Spectra of Bi2Sr2CaCu2O8,” Physical Review Letters, Vol. 89, No. 7, July 2002, Article ID: 077003, pp. 1-4.

[7]   A. I. Liechtenstein, O. Gunnarson, O. K. Anderson and R. M. Martin, “Quasiparticle Bands and Superconductivity in Bilayer Cuprates,” Physical Review B, Vol. 54, No. 17, November 1996, pp. 12505-12508. doi:10.1103/PhysRevB.54.12505

[8]   Y. H. Su, J. Chang, H. T. Lu, H. G. Luo and T. Xiang, “Effect of Bilayer Coupling on Tunneling Conductance of Double-Layer High-Tc Cuprates,” Physical Review B, Vol. 68, No. 21, December 2003, Article ID: 212501. doi:10.1103/PhysRevB.68.212501

[9]   Ajay, “Role of Interlayer Coupling in the Superconducting State of Layered Cuprate Superconductors,” Physica C: Superconductivity, Vol. 316, No. 3-4, May 1999, pp. 267-272. doi:10.1016/S0921-4534(99)00219-1

[10]   S. Chakravarty, K. Hae-Young and E. Abraham, “Frustrated Kinetic Energy, the Optical Sum Rule, and the Mechanism of Superconductivity,” Physical Review Letters, Vol. 82, No. 11, March 1999, pp. 2366-2369. doi:10.1103/PhysRevLett.82.2366

[11]   S. Chakravarty, A. Sudbo, P. W. Anderson and S. Strong, “Interlayer Tunneling and Gap Anisotropy in High- Temperature Superconductors,” Science, Vol. 261, No. 5119, July 1993, pp. 337-340. doi:10.1126/science.261.5119.337

[12]   A. Bansil, M. Lindroos, S. Sahrakorpi and R. S. Markiewicz, “Influence of the Third Dimension of Quasi-Two-Dimensional Cuprate Superconductors on Angle-Resolved Photoemission Spectra,” Physical Review B, Vol. 71, No. 1, January 2005, Article ID: 012503.

[13]   R. S. Markiewicz, S. Sahrakorpi, M. Lindroos, H. Lin and A. Bansil, “One-Band Tight-Binding Model Parametrization of the High-Tc Cuprates Including the Effect of Kz Dispersion,” Physical Review B, Vol. 72, No. 5, August 2005, Article ID: 054519. doi:10.1103/PhysRevB.72.054519

[14]   Y. D. Chaung, A. D.Gromko, A. V. Fedorov, Y. Aiura, K. Oka, Y. Ando, M. Lindroos, R. S. Markieweiz, A. Bansil and D. S. Dessau, “Bilayer Splitting and Coherence Effects in Optimal and Underdoped Bi2Sr2CaCu2O8+δ,” Physical Review B, Vol. 69, No. 9, March 2004, Article ID: 094515, pp. 1-7.

[15]   R. Lal, Ajay, R. L. Hota and S. K. Joshi, “Model for c-Axis Resistivity of Cuprate Superconductors,” Physical Review B, Vol. 57, No. 10, March 1998, pp. 6126-6136. doi:10.1103/PhysRevB.57.6126

[16]   Ajay, A. Pratap and S. K. Joshi, “Role of Cu d–d Inter-Orbital Electron Correlation on the out-of-Plane Conduction in Cuprates,” Physica C: Superconductivity, Vol. 371, No. 2, June 2002, pp. 139-145. doi:10.1016/S0921-4534(01)01085-1

[17]   B. S. Tewari, A. Dhyani and Ajay, “Influence of Inter Cell Resonant Tunneling on the out-of-Plane Electronic Transport Behavior in Layered High Tc Cuprates,” European Physical Journal B, Vol. 66, No. 1, October 2008, pp. 67-74. doi:10.1140/epjb/e2008-00375-6

[18]   A. A. Abrikosov, “Resonant Tunneling in High-Tc Superconductors,” Physica C: Superconductivity, Vol. 317, May 1999, pp. 154-174. doi:10.1016/S0921-4534(99)00056-8

[19]   P. W. Leung, B. O. Wells and R. J. Gooding, “Comparison of 32-Site Exact-Diagonalization Results and ARPES Spectral Functions for the Antiferromagnetic Insulator Sr2CuO2Cl2,” Physical Review B, Vol. 56, No. 10, 1997, pp. 6320-6326. doi:10.1103/PhysRevB.56.6320

[20]   T. Valla, A. V. Fedorov, P. D. Johnson, B. O. Wells, S. L. Hulbert, Q. Li, G. D. Gu and N. Koshizuka, “Evidence for Quantum Critical Behavior in the Optimally Doped Cuprate Bi2Sr2CaCu2O8+δ,” Science, Vol. 285, No. 5436, September 1999, pp. 2110-2113. doi:10.1126/science.285.5436.2110

 
 
Top