AiM  Vol.6 No.3 , March 2016
Functional Characterization of CRISPR-Cas System in the Ethanologenic Bacterium Zymomonas mobilis ZM4
Abstract: CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR associated proteins) is a RNA-guided defense immune system that prevents some genetic elements such as plasmids and virus from getting into the bacterial cells. Zymomonas mobilis is an ethanologenic bacterium, which encodes a subtype I-F CRISPR-Cas system containing three CRISPR loci and a far distant cas gene cluster. Reverse transcription (RT)-PCR analysis revealed that the CRISPR loci were transcribed on both strands. The Cas proteins were suggested to be expressed based on the previous transcriptomic analysis. Challenging with the invader plasmids containing the artificial protospacer with the protospacer adjacent motif (PAM) of NGG or GG exhibited immune interference activity. However, PAM motif of GG seems more effective than NGG in interference activity. Further, the artificial CRISPR arrays with the spacer sequences targeting to the specific genome sites could also lead to strong immune activity, resulting in almost no transformant grown on the agar plates. It was suggested that bacteria like Z. mobilis ZM4 are lack of the rejoining function to heal the double breakage of genomic DNA made by the CRISPR system. Conclusively, the Type I-F CRISPR-Cas system in Z. mobilis ZM4 is active to functionally defense the invading DNA elements.
Cite this paper: Dong, G. , He, M. and Feng, H. (2016) Functional Characterization of CRISPR-Cas System in the Ethanologenic Bacterium Zymomonas mobilis ZM4. Advances in Microbiology, 6, 178-189. doi: 10.4236/aim.2016.63018.

[1]   Bhaya, D., Davison, M. and Barrangou, R. (2011) CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation. Annual Review of Genetics, 45, 273-297.

[2]   Haft, D.H., Selengut, J., Mongodin, E.F. and Nelson, K.E. (2005) A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes. PLoS Computational Biology, 1, e60.

[3]   Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J.M., Wolf, Y.I., Yakunin, A.F., van der Oost, J. and Koonin, E.V. (2011) Evolution and Classification of the CRISPR-Cas Systems. Nature Reviews Microbiology, 9, 467-477.

[4]   Marraffini, L.A. and Sontheimer, E.J. (2008) CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science, 322, 1843-1845.

[5]   Nunez, J.K., Lee, A.S.Y., Engelman, A. and Doudna, J.A. (2015) Integrase-Mediated Spacer Acquisition during CRISPR-Cas Adaptive Immunity. Nature, 519, 193-198.

[6]   Fineran, P.C., Gerritzen, M.J., Suarez-Diez, M., Kunne, T., Boekhorst, J., van Hijum, S.A., Staals, R.H. and Brouns, S.J. (2014) Degenerate Target Sites Mediate Rapid Primed CRISPR Adaptation. Proceedings of the National Academy of Sciences of the United States of America, 111, E1629-E1638.

[7]   Pougach, K., Semenova, E., Bogdanova, E., Datsenko, K.A., Djordjevic, M., Wanner, B.L. and Severinov, K. (2010) Transcription, Processing and Function of CRISPR Cassettes in Escherichia coli. Molecular Microbiology, 77, 1367-1379.

[8]   Wiedenheft, B., Lander, G.C., Zhou, K., Jore, M.M., Brouns, S.J., van der Oost, J., Doudna, J.A. and Nogales, E. (2011) Structural of the RNA-Guided Surveillance Complex from a Bacterial Immune System. Nature, 477, 486-489.

[9]   Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J.R., Boekema, E.J., Dickman, M.J. and Doudna, J.A. (2011) RNA-Guided Complex from a Bacterial Immune System Enhances Target Recognition through Seed Sequence Interactions. Proceedings of the National Academy of Sciences of the United States of America, 108, 10092-10097.

[10]   Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., Dicarlo, J.E., Norville, J.E. and Church G.M. (2013) RNA-Guided Human Genome Engineering via Cas9. Science, 339, 823-826.

[11]   Jiang, W.Y., Bikard, D., Cox, D., Zhang, F. and Marraffini, L.A. (2013) RNA-Guided Editing of Bacterial Genomes Using CRISPR-Cas Systems. Nature Biotechnology, 31, 233-239.

[12]   Mojica, F.J.M., Diez-Villasenor, C., Garcia-Martinez, J. and Almendros, C. (2009) Short Motif Sequences Determine the Targets of the Prokaryotic CRISPR Defense System. Microbiology, 155, 733-740.

[13]   Fischer, S., Maier, L.K., Stoll, B., Brendel, J., Fischer, E., Pfeiffer, F., Dyall-Smith, M. and Marchfelder, A. (2012) An Archaeal Immune System Can Detect Multiple Protospacer Adjacent Motifs (PAMs) to Target Invader DNA. The Journal of Biological Chemistry, 287, 33351-33365.

[14]   Li, M., Wang, R. and Xiang, H. (2014) Haloarcula hispanica CRISPR Authenticates PAM of a Target Sequence to Prime Discriminative Adaptation. Nucleic Acids Research, 42, 7226-7235.

[15]   Cady, K.C., White, A.S., Hammond, J.H., Abendroth, M.D., Karthikeyan, R.S., Lalitha, P., Zegans, M.E. and O’Toole, G.A. (2011) Prevalence, Conservation and Functional Analysis of Yersinia and Escherichia CRISPR Regions in Clinical Pseudomonas aeruginosa Isolates. Microbiology, 157, 430-437.

[16]   He, M.X., Wu, B., Qin, H., Ruan, Z.Y., Tan, F.R., Wang, J.L., Shui, Z.X., Dai, L.C., Zhu, Q.L., Pan, K., Tang, X.Y., Wang, W.G. and Hu, Q.C. (2014) Zymomonas mobilis: A Novel Platform for Future Biorefineries. Biotechnology for Biofuels, 7, 101.

[17]   Seo, J.S., Chong, H., Park, H.S., Yoon, K.O., Jung, C., Kim, J.J., Hong, J.H., Kim, H., Kim, J.H., Kil, J.I., Park, C.J., Oh, H.M., Lee, J.S., Jin, S.J., Um, H.W., Lee, H.J., Oh, S.J., Kim, J.Y., Kang, H.L., Lee, S.Y., Lee, K.J. and Kang, H.S. (2005) The Genome Sequence of the Ethanologenic Bacterium Zymomonas mobilis ZM4. Nature Biotechnology, 23, 63-68.

[18]   Pappas, K.M., Kouvelis, V.N., Saunders, E., Brettin, T.S., Bruce, D., Detter, C., Balakireva, M., Han, C.S., Savvakis, G., Kyrpides, N.C. and Typas, M.A. (2011) Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. Mobilis Lectotype ATCC 10988. Journal of Bacteriology, 193, 5051-5052.

[19]   Kouvelis, V.N., Teshima, H., Bruce, D., Detter, C., Tapia, R., Han, C., Tampakopoulou, V.O., Goodwin, L., Woyke, T., Kyrpides, N.C., Typas, M.A. and Pappas, K.M. (2014) Finished Genome of Zymomonas mobilis subsp. Mobilis Strain CP4, an Applied Ethanol Producer. Genome Announce, 2, e00845-13.

[20]   Desiniotis, A., Kouvelis, V.N., Davenport, K., Bruce, D., Detter, C., Tapia, R., Han, C., Goodwin, L.A., Woyke, T. and Kyrpides, N.C. (2012) Complete Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. Mobilis Centrotype ATCC 29191. Journal of Bacteriology, 194, 5966-5967.

[21]   Kouvelis, V.N., Saunders, E., Brettin, T.S., Bruce, D., Detter, C., Han, C., Typas, M.A. and Pappas, K.M. (2009) Complete Genome Sequence of the Ethanol Producer Zymomonas mobilis NCIMB 11163. Journal of Bacteriology, 191, 7140-7141.

[22]   Kouvelis, V.N., Davenport, K.W., Brettin, T.S., Bruce, D., Detter, C., Han, C.S., Nolan, M., Tapia, R., Damoulaki, A., Kyrpides, N.C., Typas, M.A. and Pappas, K.M. (2011) Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp. Pomaceaelectotype ATCC 29192. Journal of Bacteriology, 193, 5049-5050.

[23]   Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M. and Peterson, K.M. (1995) Four New Derivatives of the Broad-Host-Range Cloning Vector pBBR1MCS, Carrying Different Antibiotic-Resistance Cassettes. Gene, 166, 175-176.

[24]   Richter, C., Dy, R.L., McKenzie, R.E., Watson, B.N.J., Taylor, C., Chang, J.T., McNeil, M.B., Staals, R.H.J. and Fineran, P.C. (2014) Priming in the Type I-F CRISPR-Cas System Triggers Strand-Independent Spacer Acquisition, Bi-Directionally from the Primed Protospacer. Nucleic Acids Research, 42, 8516-8526.

[25]   Almendros, C., Guzman, N.M., Diez-Villasenor, C., Garcia-Martinez, J. and Mojica, F.J.M. (2012) Target Motifs Affecting Natural Immunity by a Constitutive CRISPR-Cas System in Escherichia coli. PLoS ONE, 7, e50797.

[26]   Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R. and O’Toole A. (2012) The CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates Resistance to Naturally Occurring and Engineered Phages. Journal of Bacteriology, 194, 5728-5738.

[27]   Okamoto, T. and Nakamura, K. (1992) Simple and Highly Efficient Transformation Method for Zymomonas mobilis: Electroporation. Bioscience, Biotechnology & Biochemistry, 56, 833-833.

[28]   Pyzybilski, R., Richter, C., Gristwood, T., Clulow, J.S., Vercoe, R.B. and Fineran, P.C. (2011) Csy4 Is Responsible for CRISPR RNA Processing in Paectobacterium atrosepticum. RNA Biology, 8, 517-528.

[29]   Pourcel, C., Salvignol, G. and Vergnaud, G. (2005) CRISPR Elements in Yersinia pestis Acquire New Repeats by Preferential Uptake of Bacteriophage DNA, and Provide Additional Tools for Evolutionary Studies. Microbiology, 151, 653-663.

[30]   Kunin, V., Sorek, R. and Hugenholtz, P. (2007) Evolutionary Conservation of Sequence and Secondary Structures in CRISPR Repeats. Genome Biology, 8, R61.

[31]   Vercoe, R.B., Chang, J.T., Dy, R.L., Taylor, C., Gristwood, T., Clulow, J.S., Richter, C., Przybilski, R., Pitman, A.R. and Fineran, P.C. (2013) Cytotoxic Chromosomal Targeting by CRISPR/Cas Systems Can Reshape Bacterial Genomes and Expel or Remodel Pathogenicity Islands. PLoS Genetics, 9, e1003454.

[32]   Lillestol, R.K., Shah, S.A., Brügger, K., Redder, P., Phan, H., Christiansen, J. and Garrett, R.A. (2009) CRISPR Families of Thecrenarchaeal Genus Sulfolobus: Bidirectional Transcription and Dynamic Properties. Molecular Microbiology, 72, 259-272.

[33]   He, M.X., Wu, B., Shui, Z.X., Hu, Q.C., Wang, W.G., Tan, F.R., Tang, X.Y., Zhu, Q.L., Pan, K., Li, Q. and Su, X.H. (2012) Transcriptome Profiling of Zymomonas mobilis under Ethanol Stress. Biotechnology for Biofuels, 5, 75.

[34]   He, M.X., Wu, B., Shui, Z.X., Hu, Q.C., Wang, W.G., Tan, F.R., Tang, X.Y., Zhu, Q.L., Pan, K., Li, Q. and Su, X.H. (2012) Transcriptome Profiling of Zymomonas mobilis under Furfural Stress. Applied Microbiology and Biotechnology, 95, 189-199.

[35]   Zhang, K., Shao, H.H., Cao, Q.H., He, M.X., Wu, B. and Feng, H. (2015) Transcriptional Analysis of Adaptation to High Glucose Concentrations in Zymomonas mobilis. Applied Microbiology and Biotechnology, 99, 2009-2022.

[36]   Elmore, J.R., Yokooji, Y., Sato, T., Olson, S., Glover, CV., Graveley, B.R., Atomi, H., Terns, R.M. and Terns, M.P. (2013) Programmable Plasmid Interference by the CRISPR-Cas System in Thermococcus kodakarensis. RNA Biology, 10, 828-840.

[37]   Portillo, M.C. and Gonzalez, J.M. (2009) CRISPR Elements in Three Theromococcales: Evidence for Associated Horizontal Gene Transfer in Pyrococcus furiosus. Journal of Applied Genetics, 50, 421-430.

[38]   Pul, ü., Wurm, R., Arslan, Z., Geissen, R., Hofmann, N. and Wagner, R. (2010) Identification and Characterization of E. coli CRISPR-Cas Promoters and Their Silencing by H-NS. Molecular Microbiology, 75, 1495-1512.

[39]   Rollins, M.F., Schuman, J.T., Paulus, K., Bukhari, H.S.T. and Wiedenheft, B. (2015) Mechanism of Foreign DNA Recognition by a CRISPR RNA-Guided Surveillance Complex from Pseudomonas aeruginosa. Nucleic Acids Research, 43, 2216-2222.