CS  Vol.2 No.3 , July 2011
A Comparative Study of Analytical Solutions to the Coupled Van-der-Pol’s Non-linear Circuits Using the He’s Method (HPEM) and (BPES)
ABSTRACT
In this paper, the He’s parameter-expanding method (HPEM) and the 4q-Boubaker Polynomials Expansion Scheme (BPES) are used in order to obtain analytical solutions to the non-linear modified Van der Pol’s oscillating circuit equation. The resolution protocols are applied to the ordinary Van der Pol equation, which annexed to conjoint delayed feedback and delay-related damping terms. The results are plotted, and compared with exact solutions proposed elsewhere, in order to evaluate accuracy.

Cite this paper
nullH. Koçak, A. Yıldırım, D. Zhang, K. Boubaker and S. Mohyud-Din, "A Comparative Study of Analytical Solutions to the Coupled Van-der-Pol’s Non-linear Circuits Using the He’s Method (HPEM) and (BPES)," Circuits and Systems, Vol. 2 No. 3, 2011, pp. 196-200. doi: 10.4236/cs.2011.23028.
References
[1]   D. D. Ganji and A. Rajabi, “Assessment of Homotopy Perturbation and Perturbation Methods in Heat Transfer Radiation Equations,” International Communications in Heat and Mass Transfer, Vol. 33, No. 3, 2006, pp. 391-400. doi:10.1016/j.icheatmasstransfer.2005.11.001

[2]   D. D. Ganji and A. Sadighi, “Application of He’s Homotopy-Perturbation Method to Nonlinear Coupled Systems of Reaction-Diffusion Equations,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 4, 2006, pp. 411-418. doi:10.1515/IJNSNS.2006.7.4.411

[3]   A. Rajabi, D. D. Ganji and H. Taherian, “Application of Homotopy Perturbation Method in Nonlinear Heat Conduction and Convection Equations,” Physics Letters A, Vol. 360, No. 4-5, 2007, pp. 570-573. doi:10.1016/j.physleta.2006.08.079

[4]   L. Cveticanin, “Homotopy-Perturbation Method for Pure Nonlinear Differential Equation,” Chaos, Solitons & Fractals, Vol. 30, No. 5, 2006, pp. 1221-1230. doi:10.1016/j.chaos.2005.08.180

[5]   J. H. He, “Homotopy Perturbation Method for Bifurcation of Nonlinear Problems,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 6, No. 2, 2005, pp. 207-208.

[6]   J. H. He, “Homotopy Perturbation Method For Solving Boundary Value Problems,” Physics Letters A, Vol. 350, No. 1-2, 2006, pp. 87-88.

[7]   J. H. He, “Limit Cycle and Bifurcation of Nonlinear Problems,” Chaos, Solitons & Fractals, Vol. 26, No. 3, 2005, pp. 827-833. doi:10.1016/j.chaos.2005.03.007

[8]   F. M. Atay, “Van der Pol’s Oscillator under Delayed Feedback,” Journal of Sound and Vibration, Vol. 218, No. 2, 1998, pp. 333-339. doi:10.1006/jsvi.1998.1843

[9]   W. Jiang and J. Wei, “Bifurcation Analysis in Van der Pol’s Oscillator with Delayed Feedback,” Journal of Computational and Applied Mathematics, Vol. 213, No. 2, 2008, pp. 604-615. doi:10.1016/j.cam.2007.01.041

[10]   A. Kimiaeifar, A. R. Saidi, A. R. Sohouli and D. D. Ganji, “Analysis of Modi?ed Vander Pol’s Oscillator Using He’s Parameter-Expanding Methods,” Current Applied Physics, Vol. 10, No. 1, 2010, pp. 279-283. doi:10.1016/j.cap.2009.06.006

[11]   J. Ghanouchi, H. Labiadh and K. Boubaker, “An Attempt to Solve the Heat Transfert Equation in a Model of Pyrolysis Spray Using 4q-Order m-Boubaker Polynomials,” International Journal of Heat & Technology, Vol. 26, No. 1, 2008, pp. 49-53.

[12]   O. B. Awojoyogbe and K. Boubaker, “A Solution to Bloch NMR Flow Equations for the Analysis of Homodynamic Functions of Blood Flow System Using m-Boubaker Polynomials,” Current Applied Physics, Vol. 9, No. 3, 2009, pp. 278-288. doi:10.1016/j.cap.2008.01.019

[13]   H. Labiadh and K. Boubaker, “A Sturm-Liouville Shaped Characteristic Differential Equation As a Guide to Establish a Quasi-Polynomial Expression to the Boubaker Polynomials,” Differential Equations and Control Processes, Vol. 2, No. 2, 2007, pp. 117-133.

[14]   S. Slama, J. Bessrour, M. Bouhafs and K. B. Ben Mahmoud, “Numerical Heat Transfer, Part A: Application,” An International Journal of Computation and Methodology, Vol. 48, No. 6, 2005, pp. 401-404.

[15]   S. Slama, M. Bouhafs and K. B. Ben Mahmoud, “A Boubaker Polynomials Solution to Heat Equation for Monitoring A3 Point Evolution During Resistance Spot Welding,” International Journal of Heat and Technology, Vol. 26, No. 2, 2008, pp. 141-146.

[16]   H. Rahmanov, “Triangle Read by Rows: Row n Gives Coefficients of Boubaker Polynomial B_n(x), Calculated for X = 2cos(t), Centered by Adding –2cos(nt), Then Divided by 4, in Order of Decreasing Exponents,” OEIS (Encyclopedia of Integer Sequences), A160242.

[17]   H. Rahmanov, “Triangle Read by Rows: Row n Gives Values of the 4q-28Boubaker Polynomials B_4q(X) (Named after Boubaker Boubaker (1897-1966)), Calculated for X = 1 (or –1),” OEIS (Encyclopedia of Integer Sequences), A162180.

[18]   S. Tabatabaei, T. Zhao, O. Awojoyogbe and F. Moses, “Cut-Off Cooling Velocity Profiling Inside a Keyhole Model Using the Boubaker Polynomials Expansion Scheme,” Heat and Mass Transfer, Vol. 45, No. 10, 2009, pp. 1247-1255. doi:10.1007/s00231-009-0493-x

[19]   S. Fridjine and M. Amlouk, “A New Parameter: An ABACUS for Optimizig Functional Materials Using the Boubaker Polynomials Expansion Scheme,” Modern Physics Letters B, Vol. 23, No. 17, 2009, pp. 2179-2182. doi:10.1142/S0217984909020321

[20]   A. Belhadj, J. Bessrour, M. Bouhafs and L. Barrallier, “Experimental and Theoretical Cooling Velocity Profile Inside Laser Welded Metals Using Keyhole Approximation and Boubaker Polynomials Expansion,” Journal of Thermal Analysis and Calorimetry, Vol. 97, No. 3, 2009, pp. 911-920. doi:10.1007/s10973-009-0094-4

[21]   A. Belhadj, O. Onyango and N. Rozibaeva, “Boubaker Polynomials Expansion Scheme-Related Heat Transfer Investigation Inside Keyhole Model,” Journal of Thermophysics Heat Transfer, Vol. 23, No. 6, 2009, pp. 639- 642.

[22]   A. Chaouachi, K. Boubaker, M. Amlouk and H. Bouzouita, “Enhancement of Pyrolysis Spray Disposal Performance Using Thermal Time-Response to Precursor Uniform Deposition,” The European Physical Journal - Applied Physics, Vol. 37, No. 1, 2007, pp. 105-109. doi:10.1051/epjap:2007005

[23]   D. H. Zhang and F. W. Li, “A Boubaker Polynomials Expansion Scheme BPES-Related Analytical Solution to Williams-Brinkmann Stagnation Point Flow Equation at a Blunt Body,” Journal of Engineering Physics and Thermophysics, Vol. 84, No. 3, 2009, pp. 618-623.

[24]   Z. L. Tao, “Frequency–Amplitude Relationship of Nonlinear Oscillators by He’s Parameter-Expanding Method,” Chaos, Solitons & Fractals, Vol. 41, No. 2, 2009, pp. 642-645. doi:10.1016/j.chaos.2008.02.036

[25]   L.Xu, “He’s Parameter-Expanding Methods for Strongly Nonlinear Oscillators,” Journal of Computational and Applied Mathematics, Vol. 207, No. 1, 2007, pp. 148-154. doi:10.1016/j.cam.2006.07.020

[26]   D. D. Ganji, M. Rafei, A. Sadighi and Z. Z. Ganji, “A Comparative Comparison of He’s Method with Perturbation and Numerical Methods for Nonlinear Vibrations Equations,” International Journal of Nonlinear Dynamics in Engineering and Sciences, Vol. 1, No. 1, 2009, pp. 1-20.

[27]   J. H. He, “Determination of Limit Cycles for Strongly Nonlinear Oscillators,” Physical Review Letters, Vol. 90, No. 17, 2003, pp. 1-11. doi:10.1103/PhysRevLett.90.174301

[28]   Z. M. Odibat and S. Momani, “Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 7, No. 1, 2006, pp. 27-34. doi:10.1515/IJNSNS.2006.7.1.27

[29]   E. Yusufoglu, “Variational Iteration Method for Construction of Some Compact and Non Compact Structures of Klein-Gordon Equations,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 2, 2007, pp. 152-158.

[30]   M. D’Acunto, “Self-Excited Systems: Analytical Determination of Limit Cycles,” Chaos, Solitons & Fractals, Vol. 30, No. 3, 2006, pp. 719-724. doi:10.1016/j.chaos.2006.03.070

[31]   J. K. Hale, “Averaging Methods for Differential Equations with Retarded Arguments and a Small Parameter,” Journal of Differential Equations, Vol. 2, No. 1, 1966, pp. 57-73. doi:10.1016/0022-0396(66)90063-5

[32]   A. Golbabai and D. Ahmadian, “Homotopy Pade Method for Solving Linear and Nonlinear Integral Equations,” International Journal of Nonlinear Dynamics in Engineering and Sciences, Vol. 1, No. 1, 2009, pp. 59-66.

[33]   J. H. He, “Some Asymptotic Methods for Strongly Nonlinear Equations,” International Journal of Modern Physics B, Vol. 20, No. 10, 2006, pp. 1141-1199. doi:10.1142/S0217979206033796

[34]   J. H. He, “Book Keeping Parameter in Perturbation Methods,” International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 2, No. 3, 2001, pp. 257-264.

 
 
Top