Solitons and Heat Transfer in Nonlinear Lattices with Cubic On-Site and Quartic Interaction Potentials

Show more

References

[1] Saito, K. (2003) Strong Evidence of Normal Heat Conduction in a One-Dimensional Quantum System. Europhysics Letters, 61, 34.

[2] Zurcher, U. and Talkner, P. (1900) Quantum-Mechanical Harmonic Chain Attached to Heat Baths. II. Nonequilibrium Properties. Physical Review A, 42, 3278.

http://dx.doi.org/10.1103/PhysRevA.42.3278

[3] Roy, D. and Dhar, A. (2008) Role of Pinning Potentials in Heat Transport through Disordered Harmonic Chains. Physical Review E, 78, Article ID: 051112.

http://dx.doi.org/10.1103/PhysRevE.78.051112

[4] O’Connor, A.J. and Lebowitz, J.L. (1974) Heat Conduction and Sound Transmission in Isotopically Disordered Harmonic Crystals. Journal of Mathematical Physics, 15, 692.

http://dx.doi.org/10.1063/1.1666713

[5] Eckmann, J.P., Pillet, C.A. and Rey-Bellet L. (1999) Non-Equilibrium Statistical Mechanics of Anharmonic Chain Coupled to Two Heat Baths at Different Temperatures. Communications in Mathematical Physics, 201, 657.

[6] Verheggen, T. (1979) Transmission Coefficient and Heat Conduction of a Harmonic Chain with Random Masses: Asymptotic Estimates on Products of Random Matrices. Communications in Mathematical Physics, 68, 69.

[7] Dhar, A. (2001) Comment on “Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices?” Physical Review Letters, 87, Article ID: 069401.

[8] Mejia-Monasterio, C., Larralde, H. and Leyvraz, F. (2001) Coupled Normal Heat and Matter Transport in a Simple Model System. Physical Review Letters, 86, 5417.s

[9] Li, B., Wang, J. and Casati, G. (2003) Heat Conductivity in Linear Mixing Systems. Physical Review E, 67, 021204.

http://dx.doi.org/10.1103/PhysRevE.67.021204

[10] Dhar, A. and Roy, D. (2006) Heat Transport in Harmonic Lattices. Journal of Statistical Physics, 125, 801-820.

http://dx.doi.org/10.1007/s10955-006-9235-3

[11] Li, B.W., Wang, L. and Hu, B. (2002) Finite Thermal Conductivity in 1D Models Having Zero Lyapunov Exponents. Physical Review Letters, 88, Article ID: 223901.

http://dx.doi.org/10.1103/PhysRevLett.88.223901

[12] Nakazawa, H. (1968) Energy Flow in Harmonic Linear Chain. Progress of Theoretical Physics, 39, 236-238.

http://dx.doi.org/10.1143/PTP.39.236

[13] Li, B.W., Zhao, H. and Hu, B. (2001) Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices? Physical Review Letters, 86, 63.

http://dx.doi.org/10.1103/PhysRevLett.86.63

[14] Mountain, R.D. and MacDonald, R.A. (1983) Thermal Conductivity of Crystals: A Molecular-Dynamics Study of Heat Flow in a Two-Dimensional Crystal. Physical Review B, 28, 3022.

http://dx.doi.org/10.1103/PhysRevB.28.3022

[15] Jackson, E.A. and Mistriotis, A.D. (1989) Thermal Conductivity of One- and Two-Dimensional Lattices. Journal of Physics: Condensed Matter, 1, 1223.

http://dx.doi.org/10.1088/0953-8984/1/7/006

[16] Dhar, A. (2001) Heat Conduction in the Disordered Harmonic Chain Revisited. Physical Review Letters, 86, 5882.

http://dx.doi.org/10.1103/PhysRevLett.86.5882

[17] Lepri, S., Livi, R. and Politi, A. (1997) Heat Conduction in Chains of Nonlinear Oscillators. Physical Review Letters, 78, 1896.

http://dx.doi.org/10.1103/PhysRevLett.78.1896

[18] Rubin, R.J. and Greer, W.L. (1971) Abnormal Lattice Thermal Conductivity of a One-Dimensional, Harmonic, Isotopically Disordered Crystal. Journal of Mathematical Physics, 12, 1686.

[19] Shiba, H. and Ito, N. (2008) Anomalous Heat Conduction in Three-Dimensional Nonlinear Lattices. Journal of the Physical Society of Japan, 77, Article ID: 054006.

http://dx.doi.org/10.1143/JPSJ.77.054006

[20] Bourbonnais, R. and Maynard, R. (1990) Energy Transport in One- and Two-Dimensional Anharmonic Lattices with Isotopic Disorder. Physical Review Letters, 64, 1397.

http://dx.doi.org/10.1103/PhysRevLett.64.1397

[21] Terraneo, M., Peyrard, M. and Casati, G. (2002) Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Physical Review Letters, 88, Article ID: 094302.

http://dx.doi.org/10.1103/PhysRevLett.88.094302

[22] Li, B.W., Wang, L. and Casati, G. (2006) Negative Differential Thermal Resistance and Thermal Transistor. Applied Physics Letters, 88, Article ID: 143501.

http://dx.doi.org/10.1063/1.2191730

[23] Gaul, C. and Büttner, H. (2007) Quantum Mechanical Heat Transport in Disordered Harmonic Chains. Physical Review E, 76, Article ID: 011111.

http://dx.doi.org/10.1103/PhysRevE.76.011111

[24] Segal, D. and Nitzan, A. (2005) Spin-Boson Thermal Rectifier. Physical Review Letters, 94, Article ID: 034301.

http://dx.doi.org/10.1103/PhysRevLett.94.034301

[25] Li, B.W., Wang, L. and Casati, G. (2004) Thermal Diode: Rectification of Heat Flux. Physical Review Letters, 93, Article ID: 184301.

http://dx.doi.org/10.1103/PhysRevLett.93.184301

[26] Toda, M. (1979) Solitons and Heat Conduction. Physica Scripta, 20, 424.

http://dx.doi.org/10.1088/0031-8949/20/3-4/017

[27] Dhar, A. (2008) Heat Transport in Low-Dimensional Systems. Advances in Physics, 57, 457-537.

http://dx.doi.org/10.1080/00018730802538522

[28] Wang, J.S. (2007) Quantum Thermal Transport from Classical Molecular Dynamics. Physical Review Letters, 99, Article ID: 160601.

http://dx.doi.org/10.1103/PhysRevLett.99.160601

[29] Stock, G. (2009) Classical Simulation of Quantum Energy Flow in Biomolecules. Physical Review Letters, 102, Article ID: 118301.

http://dx.doi.org/10.1103/PhysRevLett.102.118301

[30] Wu, L.A. and Segal, D. (2011) Quantum Heat Transfer: A Born-Oppenheimer Method. Physical Review E, 83, Article ID: 051114.

http://dx.doi.org/10.1103/PhysRevE.83.051114

[31] Imai, H., Wada, H. and Shiga, M. (1995) Effects of Spin Fluctuations on the Specific-Heat in YMN2 and Y0.97SC-0.03MN2. Journal of the Physical Society of Japan, 64, 2198.

[32] Theodorakopoulos, N. and Bacalis, N.C. (1992) Thermal Solitons in the Toda Chain. Physical Review B, 46, 10706.

http://dx.doi.org/10.1103/PhysRevB.46.10706

[33] Takayama, H. and Ishikawa, M. (1986) Classical Thermodynamics of the Toda Lattice as a Classical Limit of the Two-Component Bethe Ansatz Scheme. Progress of Theoretical Physics, 76, 820.

[34] Theodorakopoulos, N. (1984) Ideal-Gas Approach to the Statistical Mechanics of Integrable Systems: The Sine-Gordon Case. Physical Review B, 30, 4071.

http://dx.doi.org/10.1103/PhysRevB.30.4071

[35] Majernik, V. and Majernikova, E. (1995) The Possibility of Thermal Solitons. International Journal of Heat and Mass Transfer, 38, 2701-2703.

[36] Li, N.B., Zhan, F., Hanggi, P. and Li, B.W. (2009) Shuttling Heat across One-Dimensional Homogenous Nonlinear Lattices with a Brownian Heat Motor. Physical Review E, 80, Article ID: 011125.

http://dx.doi.org/10.1103/PhysRevE.80.011125

[37] Dhar, A. (2008) Heat Transport in Low-Dimensional Systems. Advances in Physics, 57, 5.

[38] Stefano, L., Livi, R. and Politi, A. (2003) Thermal Conduction in Classical Low-Dimensional Lattices. Arxiv: Condmat/0112193v2.

[39] Radcliffe, J. M. (1971) Some Properties of Coherent Spin States. Journal of Physics A: General Physics, 4, 313.

[40] Baldwin, D., Goklas, U. and Hereman, W. (2004) Symbolic Computation of Hyperbolic Tangent Solutions for Nonlinear Differential-Difference Equations. Computer Physics Communications, 162, 203-217.

http://dx.doi.org/10.1016/j.cpc.2004.07.002