Back
 JEP  Vol.7 No.4 , March 2016
The Influence of Different Contents of Bi Addition on the Corrosion Behavior of Various Zirconium-Based Alloys
Abstract:

Zr-4(Zr-1.5Sn-0.2Fe-0.1Cr,wt%), S5(Zr-0.8Sn-0.34Nb-0.39Fe-0.1Cr), T5(Zr-0.7Sn-1.07Nb-0.32Fe-0.08Cr) and Zr-1Nb were adopted to prepare Bi-containing zirconium alloys for systematically investigating the effect of Bi addition on the corrosion resistance of zirconium alloys. The specimens were corroded in superheated steam at 400/10.3 MPa, and in lithiated water with 0.01 M LiOH or in deionized water at 360/18.6 MPa by autoclave testing. Results show that the corrosion resistance increases with the increasing of Bi content dissolved in α-Zr. But the presence of Bi-con- taining second phase particles (SPPs) is unfavorable for the enhancement of corrosion resistance. This indicates that the Bi dissolved in α-Zr matrix plays an important role in improving the corrosion resistance, while the precipitation of the Bi-containing SPPs does harm to the corrosion resistance.

Cite this paper: Yao, M. , Wu, X. , Duan, W. , Zhang, W. , Zhu, L. , Zou, L. , Zhang, J. , Li, Q. and Zhou, B. (2016) The Influence of Different Contents of Bi Addition on the Corrosion Behavior of Various Zirconium-Based Alloys. Journal of Environmental Protection, 7, 495-501. doi: 10.4236/jep.2016.74044.
References

[1]   Sabol, G.P., Kilp, G.R., Balfour, M.G. and Roberts, E. (1989) Development of a Cladding Alloy for Higher Burnup. Zirconium in the Nuclear Industry: 8th International Symposium, ASTM STP1023, ASTM, Philadelphia, 227-244.

[2]   Nikulina, A.V., Markelov, V.A., Peregud, M.M., Bibilashvili, Y.K., Kotrekhov, V.A., Lositsky, A.F., et al. (1996) Zirconium Alloy E635 as a Material for Fuel Rod Cladding and Other Components of VVER and RBMK Cores. Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP1295, ASTM, Philadelphia, 785-804.
http://dx.doi.org/10.1520/stp16201s

[3]   Mardon, J.P., Charquet, D. and Senevat, J. (2000) Influence of Composition and Fabrication Process on Out-of-Pile and In-Pile Properties of M5 Alloy. Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP1354, ASTM, Philadelphia, 505-524.
http://dx.doi.org/10.1520/stp14314s

[4]   Comstock, R.J., Schoenberger, G. and Sabol, G.P. (1996) Influence of Processing Variables and Alloy Chemistry on the Corrosion Behavior of ZIRLO Nuclear Fuel Cladding. Zirconium in the Nuclear Industry: 11th International Symposium, ASTM STP1295, ASTM, Philadelphia, 710-725.
http://dx.doi.org/10.1520/stp16198s

[5]   Zhou, B.X., Yao, M.Y., Li, Z.K., Wang, X.M., Zhou, J., Long, C.S., et al. (2012) Optimization of N18 Zirconium Alloy for Fuel Cladding of Water Reactors. Journal of Material Science & Technology, 28, 606-613.
http://dx.doi.org/10.1016/S1005-0302(12)60105-4

[6]   Yueh, H.K., Kesterson, R.L., Comstock, R.J., Shah, H.H., Colburn, D.J., Dahlback, M. and Hallstadius, L. (2005) Improved ZIRLOTM Cladding Performance through Chemistry and Process Modifications. Zirconium in the Nuclear Industry: 14th International Symposium, ASTM STP1467, ASTM, Philadelphia, 330-346.
http://dx.doi.org/10.1520/jai12344

[7]   Hong, H.S., Moon, J.S., Kim, S.J. and Lee, K.S. (2001) Investigation on the Oxidation Characteristics of Copper- Added Modified Zircaloy-4 Alloys in Pressurized Water at 360?C. Journal of Nuclear Materials, 297, 113-119.
http://dx.doi.org/10.1016/S0022-3115(01)00601-8

[8]   Park, J.Y., Choi, B.K., Yoo, S.J. and Jeong, Y.H. (2006) Corrosion Behavior and Oxide Properties of Zr-1.1 wt%Nb- 0.05 wt%Cu Alloy. Journal of Nuclear Materials, 359, 59-68.
http://dx.doi.org/10.1016/j.jnucmat.2006.07.017

[9]   Yao, M.Y., Zhang, Y., Li, S.L., Zhang, X., Zhou, J. and Zhou, B.X. (2011) Effect of Cu Content on the Corrosion Resistance of Zr-0.80Sn-0.34Nb-0.39Fe-0.10Cr-xCu Alloy in Superheated Steam at 500?C. Acta Metallurgica Sinica, 47, 872-876. (In Chinese)

[10]   Li, S.L., Yao, M.Y., Zhang, X., Geng, J.Q., Peng, J.C. and Zhou, B.X. (2011) Effect of adding Cu on the Corrosion Resistance of M5 Alloy in Superheated Steam at 500?C. Acta Metallurgica Sinica, 47, 163-168. (In Chinese)

[11]   Yao, M.Y., Zhou, B.X., Li, Q., Liu, W.Q., Geng, X. and Lu, Y.P. (2008) A Superior Corrosion Behavior of Zircaloy-4 in Lithiated Water at 360?C/18.6 MPa by β-Quenching. Journal of Nuclear Materials, 374, 197-203.
http://dx.doi.org/10.1016/j.jnucmat.2007.08.002

[12]   Yao, M.Y., Shen, Y.F., Li, Q., Peng, J.C., Zhou, B.X. and Zhang, J.L. (2013) The Effect of Final Annealing after β- Quenching on the Corrosion Resistance of Zircaloy-4 in Lithiated Water with 0.04 M LiOH. Journal of Nuclear Materials, 435, 63-70.
http://dx.doi.org/10.1016/j.jnucmat.2012.12.029

[13]   Okamoto, H. (1990) Zirconium-Bismuth System. Bulletin of Alloy Phase Diagrams, 11, 295-297.

[14]   Li, P.Z., Li, Z.K., Xue, X.Y. and Liu, J.Z. (1998) Influence of Alloying Elements on the Corrosion Resistance of Zr-Nb Alloys. Rare Metal Material Engineering, 27, 356-359. (In Chinese)

[15]   Zhu, L., Yao, M.Y., Sun, G.C., Chen, W.J., Zhang, J.L. and Zhou, B.X. (2013) Effect of Bi Addition on the Corrosion Resistance of Zr-1Nb Alloy in Deionized Water at 360?C and 18.6 MPa. Acta Metallurgica Sinica, 49, 51-57. (In Chinese)

[16]   Chen, C.M., Yao, M.Y., Zhou, J., Zhou, B.X., Zhang, J.L., Li, Q., et al. (2015) The Corrosion Behavior of Zr-0.7Sn- 1.07Nb-0.32Fe-0.08Cr-xBi Alloy in Superheated Steam at 400?C/10.3 MPa. Rare Metal Material Engineering, 44, 933-938. (In Chinese)

[17]   Yao, M.Y., Zou, L.H., Xie, X.F., Zhang, J.L., Peng, J.C. and Zhou, B.X. (2012) Effect of Bi Addition on the Corrosion Resistance of Zr-4 in Superheated Steam at 400?C/10.3 MPa. Acta Metallurgica Sinica, 48, 1097-1102. (In Chinese)

[18]   Zhang, W.P., Yao, M.Y., Zhu, L., Zhang, J.L., Zhou, B.X. and Li, Q. (2013) The Corrosion Behavior of Zr-0.8Sn- 0.35Nb-0.4Fe-0.1Cr-xBi Alloy in Superheated Steam at 400?C/10.3 MPa. Corrosion & Protection, 34, 463-467. (In Chinese)

[19]   Zhao, H.P., Yao M.Y., Huang, J., Zhang J.L., Peng, J.C. and Zhou B.X. (2016) The Microstructure of Bi-Containing Zirconium Alloys. Rare Metals, 1-8.
http://dx.doi.org/10.1007/s12598-015-0677-0

[20]   Yao, M.Y., Wu, X.T., Huang, J., Zhang, J.L., Zhang, X. and Zhou, B.X. (2015) Study on the Corrosion Resistance of Zr-1Nb-xM (M=S, Cu, Ge, Bi) Alloys. Oxidation of Metals, 84, 647-659.
http://dx.doi.org/10.1007/s11085-015-9594-8

[21]   Zhou, B.X., Li, Q., Yao, M.Y., Liu, W.Q. and Chu, Y.L. (2008) Effect of Water Chemistry and Composition on Microstructural Evolution of Oxide Film on Zr Alloy. In: Bruce, K. and Magnus, L., Eds., Zirconium in the Nuclear Industry: 15th International Symposium, ASTM STP1505, ASTM, Philadelphia, 360-383.

[22]   Yang, W.D. (2006) Reactor Materials Science. 2nd Edition, Atomic Energy Press, Beijing. (In Chinese)

[23]   Weidinger, H.G., Ruhmann, H., Cheliotis, G., Maguire, M. and Yau, T.L. (1991) Corrosion-Electrochemical Properties of Zirconium Intermetallics. In: Eucken, C.M. and Garde, A.M., Eds., Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, ASTM, Philadelphia, 499-535.
http://dx.doi.org/10.1520/stp25525s

[24]   Jeong, Y.H., Lee, K.O. and Kim, H.G. (2002) Correlation between Microstructure and Corrosion Behavior of Zr-Nb Binary Alloy. Journal of Nuclear Materials, 302, 9-19.
http://dx.doi.org/10.1016/S0022-3115(02)00703-1

[25]   Jeong, Y.H., Kim, H.G., Kim, D.J., Choi, B.K. and Kim, J.H. (2003) Influence of Nb Concentration in the α-Matrix on the Corrosion Behavior Zr-xNb Binary Alloys. Journal of Nuclear Materials, 323, 72-80.
http://dx.doi.org/10.1016/j.jnucmat.2003.08.031

[26]   Rudling, P. and Wikmark, G. (1999) A Unified Model of Zircaloy BWR Corrosion and Hydriding Mechanisms. Journal of Nuclear Materials, 265, 44-59.
http://dx.doi.org/10.1016/S0022-3115(98)00613-8

[27]   Rudling, P., Wikmark, G., Lehtinen, B. and Pettersson, H. (2000) Impact of Second Phase Particles on BWR Zr-2 Cor- rosion and Hydriding Performance. In: Sabol, G.P. and Moan, G.D., Eds., Zirconium in the Nuclear Industry: 12th International Symposium, ASTM STP 1354, ASTM, Philadelphia, 678-708.
http://dx.doi.org/10.1520/stp14323s

 
 
Top