[1] [1] Salas, A.H. and Gomez, C.A. (2010) Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation. Mathematical Problems in Engineering, 2010, Article ID: 194329.
http://dx.doi.org/10.1155/2010/194329
[2] Bock, T.L. and Kruskal, M.D. (1979) A Two-Parameter Miura Transformation of the Benjamin-One Equation. Physics Letters A, 74, 173-176.
http://dx.doi.org/10.1016/0375-9601(79)90762-X
[3] Wazwaz, A.M. (2012) Multiple-Soliton Solutions for a (3 + 1)-Dimensional Generalized KP Equation. Communications in Nonlinear Science and Numerical Simulation, 17, 491-495.
http://dx.doi.org/10.1016/j.cnsns.2011.05.025
[4] Hafez, M.G. and Alam, M.N. (2015) Exact Solutions for Some Important Nonlinear Physical Models via (2 + 1)-Dimensional Sine-Gordon Equation, (2 + 1)-Dimensional Sinh-Gordon Equation, DBM Equation and TBM Equations. Asian Journal of Mathematics and Computer Research, 5, 157-174.
[5] Alam, M.N., Hafez, M.G., Akbar, M.A. and Roshid, H.O. (2015) Exact Solutions to the (2 + 1)-Dimensional Boussinesq Equation via exp(Φ(η))-Expansion Method. Journal of Scientometric Research, 7, 1-10.
http://dx.doi.org/10.3329/jsr.v7i3.17954
[6] Hatez, M.G., Alam, M.N. and Akbar, M.A. (2014) Application of the -Expansion Method to Find Exact Solutions for the Solitary Wave Equation in an Unmagnatized Dusty Plasma. World Applied Sciences Journal, 32, 2150-2155.
[7] Belgacem, F.B.M., Karaballi, A.A. and Kalla, S.L. (2003) Analytical Investigations of the Sumudu Transform and Applications to Integral Production Equations. Mathematical Problems in Engineering, 2003, 103-118.
http://dx.doi.org/10.1155/S1024123X03207018
[8] Belgacem, F.B.M. (2006) Introducing and Analyzing Deeper Sumudu Properties. Nonlinear Studies, 13, 23-41.
[9] Belgacem, F.B.M. (2010) Sumudu Transform Applications to Bessel Functions and Equations. Applied Mathematical Sciences, 4, 3665-3686.
[10] Belgacem, F.B.M. and Karaballi, A.A. (2006) Sumudu Transform Fundamental Properties Investigations and Applications. Journal of Applied Mathematics and Stochastic Analysis, 2006, Article ID: 91083.
http://dx.doi.org/10.1155/JAMSA/2006/91083
[11] Bulut, H., Baskonus, H.M. and Tuluce, S. (2012) Homotopy Perturbation Sumudu Transform Method for One-Two-Three Dimensional Initial Value Problems. e-Journal of New World Sciences Academy, 7, 55-65.
[12] Bulut, H., Baskonus, H.M. and Tuluce, S. (2012) The Solution of Wave Equations by Sumudu Transform Method. Journal of Advanced Research in Applied Mathematics, 4, 66-72.
http://dx.doi.org/10.5373/jaram.1317.021812
[13] Bulut, H., Baskonus, H.M. and Tuluce, S. (2012) The Solutions of Partial Differential Equations with Variable Coefficient by Sumudu Transform Method. AIP Conference Proceedings, 1493, 91-95.
http://dx.doi.org/10.1063/1.4765475
[14] Bulut, H., Baskonus, H.M. and Tuluce, S. (2013) Homotopy Perturbation Sumudu Transform Method for Heat Equations. Mathematics in Engineering, Science and Aerospace (MESA), 4, 49-60.
[15] Chen, Y., Wang, Q. and Li, B. (2004) A Series of Soliton-Like and Double-Like Periodic Solutions of a (2 + 1)-Dimensional Asymmetric Nizhnik-Novikov-Vesselov Equation. Communications in Theoretical Physics, 42, 655-660.
http://dx.doi.org/10.1088/0253-6102/42/5/655
[16] Yomba, E. (2006) The Modified Extended Fan Sub-Equation Method and Its Application to the (2 + 1)-Dimensional Broer-Kaup-Kupershmidt Equation. Chaos, Solitons & Fractals, 27, 187-196.
http://dx.doi.org/10.1016/j.chaos.2005.03.021
[17] Motsa, S.S., Sibanda, P. and Shateyi, S. (2010) A New Spectral-Homotopy Analysis Method for Solving a Nonlinear Second Order BVP. Communications in Nonlinear Science and Numerical Simulation, 15, 2293-2302.
http://dx.doi.org/10.1016/j.cnsns.2009.09.019
[18] Motsa, S.S., Sibanda, P., Awad, F.G. and Shateyi, S. (2010) A New Spectral-Homotopy Analysis Method for the MHD Jeffery-Hamel Problem. Computers & Fluids, 39, 1219-1225.
http://dx.doi.org/10.1016/j.compfluid.2010.03.004
[19] Gardner, L.R., Gardner, G.A. and Dogan A. (1996) A Least-Squares Finite Element Scheme for RLW Equation. Communications in Numerical Methods in Engineering, 12, 795-804.
http://dx.doi.org/10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O
[20] Alam, M.N. and Akbar, M.A. (2013) Exact Traveling Wave Solutions of the KP-BBM Equation by Using the New Approach of Generalized (G’/G)-Expansion Method. SpringerPlus, 2, 617.
http://dx.doi.org/10.1186/2193-1801-2-617
[21] Alam, M.N., Akbar, M.A. and Mohyud-Din, S.T. (2014) General Traveling Wave Solutions of the Strain Wave Equation in Microstructured Solids via the New Approach of Generalized (G’/G)-Expansion Method. Alexandria Engineering Journal, 53, 233-241.
http://dx.doi.org/10.1016/j.aej.2014.01.002
[22] Alam, M.N. and Akbar, M.A. (2014) The New Approach of Generalized (G’/G)-Expansion Method for Nonlinear Evolution Equations. Ain Shams Engineering Journal, 5, 595-603.
http://dx.doi.org/10.1016/j.asej.2013.12.008
[23] Alam, M.N. and Akbar, M.A. (2014) Traveling Wave Solutions for the mKdV Equation and the Gardner Equation by New Approach of the Generalized (G’/G)-Expansion Method. Journal of the Egyptian Mathematical Society, 22, 402-406.
http://dx.doi.org/10.1016/j.joems.2014.01.001
[24] Zhang, J., Jiang, F. and Zhao, X. (2010) An Improved (G’/G)-Expansion Method for Solving Nonlinear Evolution Equations. International Journal of Computer Mathematics, 87, 1716-1725.
http://dx.doi.org/10.1080/00207160802450166
[25] Inc, M. and Evans, D.J. (2004) On Traveling Wave Solutions of Some Nonlinear Evolution Equations. International Journal of Computer Mathematics, 8, 191-202.
http://dx.doi.org/10.1080/00207160310001603307
[26] Hu, J.L. (2004) A New Method of Exact Traveling Wave Solution for Coupled Nonlinear Differential Equations. Physics Letters A, 322, 211-216.
http://dx.doi.org/10.1016/j.physleta.2004.01.074
[27] Fan, E.G. (2000) Extended Tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-218.
http://dx.doi.org/10.1016/S0375-9601(00)00725-8
[28] El-Wakil, S.A. and Abdou M.A. (2007) New Exact Travelling Wave Solutions Using Modified Extended Tanh-Function Method. Chaos, Solitons & Fractals, 31, 840-852.
http://dx.doi.org/10.1016/j.chaos.2005.10.032
[29] Alam, Md.N. and Belgacem, F.B.M. (2016) New Generalized (G’/G)-Expansion Method Applications to Coupled Konno-Oono Equation. Advances in Pure Mathematics, 6, 168-179.
http://dx.doi.org/10.4236/apm.2016.63014
[30] Alam M.N., Akbar, M.A. and Mohyud-Din, S.T. (2014) A Novel (G’/G)-Expansion Method and Its Application to the Boussinesq Equation. Chinese Physics B, 23, Article ID: 020203.
http://dx.doi.org/10.1088/1674-1056/23/2/020203
[31] Alam, M.N., Hafez, M.G., Belgacem, F.B.M. and Akbar, M.A. (2015) Applications of the Novel (G’/G)-Expansion Method to Find New Exact Traveling Wave Solutions of the Nonlinear Coupled Higgs Field Equation. Nonlinear Studies, 22, 613-633.
[32] Alam, M.N., Belgacem, F.B.M. and Akbar, M.A. (2015) Analytical Treatment of the Evolutionary (1 + 1)-Dimensional Combined KdV-mKdV Equation via the Novel (G’/G)-Expansion Method. Journal of Applied Mathematics and Physics, 3, 1571-1579.
http://dx.doi.org/10.4236/jamp.2015.312181
[33] Alam, M.N., Belgacem, F.B.M. (2015) Application of the Novel (G’/G)-Expansion Method to the Regularized Long Wave Equation. Waves, Wavelets and Fractals, 1, 51-67.
http://dx.doi.org/10.1515/wwfaa-2015-0006
[34] Alam, M.N. and Akbar, M.A. (2014) Traveling Wave Solutions of the Nonlinear (1 + 1)-Dimensional Modified Benjamin-Bona-Mahony Equation by Using Novel (G’/G)-Expansion Method. Physical Review & Research International, 4, 147-165.
[35] Bulut, H., Baskonus, H.M. and Tuluce, S. (2014) On the Solution of Nonlinear Time-Fractional Generalized Burgers Equation by Homotopy Analysis Method and Modified Trial Equation Method. International Journal of Modeling and Optimization, 4, 305-309.
http://dx.doi.org/10.7763/IJMO.2014.V4.390
[36] Bekir, A. (2008) Application of the (G’/G)-Expansion Method for Nonlinear Evolution Equations. Physics Letters A, 372, 3400-3406.
http://dx.doi.org/10.1016/j.physleta.2008.01.057
[37] Smaoui, N. and Belgacem, F.B.M. (2002) Connections between the Convective Diffusion Equation and the Forced Burgers Equation. Journal of Applied Mathematics and Stochastic Analysis, 15, 57-75.
http://dx.doi.org/10.1155/S1048953302000060
[38] Zayed, E.M.E. (2011) The (G’/G)-Expansion Method Combined with the Riccati Equation for Finding Exact Solutions of Nonlinear PDEs. Journal of Applied Mathematics & Informatics, 29, 351-367.
[39] Zhu, S. (2008) The Generalized Riccati Equation Mapping Method in Nonlinear Evolution Equation: Application to (2 + 1)-Dimensional Boiti-Pempinelle Equation. Chaos, Solitons & Fractals, 37, 1335-1342.
http://dx.doi.org/10.1016/j.chaos.2006.10.015