IJMNTA  Vol.5 No.1 , March 2016
Advanced Control of a PMSG Wind Turbine
Abstract: In this work, an intelligent artificial control of a variable speed wind turbine (PMSG) is proposed. First, a mathematical model of turbine written at variable speed is established to investigate simulations results. In order to optimize energy production from wind, a pitch angle and DC bus control law is synthesized using PI controllers. Then, an intelligent artificial control such as fuzzy logic and artificial neural network control is applied. Its simulated performances are then compared to those of a classical PI controller. Results obtained in MATLAB/Simulink environment show that the fuzzy and the neuro control is more robust and has superior dynamic performance and hence is found to be a suitable replacement of the conventional PI controller for the high performance drive applications.
Cite this paper: Slah, H. , Mehdi, D. and Lassaad, S. (2016) Advanced Control of a PMSG Wind Turbine. International Journal of Modern Nonlinear Theory and Application, 5, 1-10. doi: 10.4236/ijmnta.2016.51001.

[1]   Nguyen, H.M. and Naidu, D.S. (2011) Advanced Control Strategies for Wind Energy Systems. IEEE PES Power Systems Conference & Exposition (PSCE), Phoenix, 20-23 March 2011, 1-8. brhttpdx.doi.org10.1109psce.2011.5772514

[2]   Yin, M., Li, G., Zhou, M. and Zhao, C. (2007) Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration. IEEE Power Engineering Society General Meeting, Tampa, 24-28 June 2007, 1-6.brhttpdx.doi.org10.1109pes.2007.385982

[3]   Merabet, A., Thongam, J. and Gu, J. (2011) Torque and Pitch Angle Control for Variable Speed Wind Turbines in All Operating Regimes. 10th International Conference on Environment and Electrical Engineering (EEEIC), Rome, 8-11 May 2011, 1-5. brhttpdx.doi.org10.1109eeeic.2011.5874598

[4]   Rolan, A., Luna, A., Vazquez, G., Aguilar, D. and Azevedo, G. (2009) Modeling of a Variable Speed Wind Turbine with a Permanent Magnet Synchronous Generator. IEEE International Symposium on Industrial Electronics (ISIE), Seoul, 5-8 July 2009, 734-739. brhttpdx.doi.org10.1109isie.2009.5218120

[5]   Yao, X.J., Liu, Y.M., Xing, Z.X. and Zhang, C.M. (2008) Active Vibration Control Strategy Based on Expert PID Pitch Control of Variable Speed Wind Turbine. International Conference on Electrical Machines and Systems (ICEMS 2008), Wuhan, 17-20 October 2008, 635-639.

[6]   Veeramani, C. and Mohan, G. (2011) A Fuzzy Based Pitch Angle Control for Variable Speed Wind Turbines. IEEE Student Conference on Research and Development (SCOReD), Cyberjaya, 36-39.

[7]   Li, S., Haskew, T.A. and Xu, L. (2010) Conventional and Novel Control Designs for Direct Driven PMSG Wind Turbines. Electric Power Systems Research, 80, 328-338. brhttpdx.doi.org10.1016j.epsr.2009.09.016

[8]   Chinchilla, M., Arnaltes, S. and Burgos, J.C. (2006) Control of Permanent-Magnet Generators Applied to Variable-Speed Wind Energy Systems Connected to the Grid. IEEE Transactions on Energy Conversion, 21, 130-135.brhttpdx.doi.org10.1109TEC.2005.853735

[9]   Chen, J., Wu, H.B., Sun, M., Jiang, W.N., Cai, L. and Guo, C.Y. (2012) Modeling and Simulation of Directly Driven Wind Turbine with Permanent Magnet Synchronous Generator. Proceedings of the 2012 IEEE Innovative Smart Grid Technologies, Asia, May 2012, 1-5.

[10]   Rubén Tapia, O., Omar Aguilar, M., Abel García, B. and Omar J. Santos, S. (2013) Adaptive PI Controllers for Doubly Fed Induction Generator Using B-Spline Artificial Neural Networks. International Journal of Computer Applications, 80, 37-42. brhttpdx.doi.org10.512013956-1949